Mathematical modelling of a self-oscillating catalytic reaction in a flow reactor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article is devoted to the analysis of possible spatiotemporal kinetic structures that can arise during catalytic oxidation reactions on metal surfaces at atmospheric pressure. The catalytic oscillatory reaction in a flow reactor is modeled using a 1D system of equations of the reaction–diffusion–convection type. The STM type oscillatory reaction model of catalytic oxidation is used as a kinetic model. The obtained results of mathematical modelling show the decisive influence of an axial mixing in the reactor on the development of spatiotemporal structures. It is also shown that, depending on the ratio of adsorption constants of reacting species, three different isothermal spatiotemporal structures can arise, namely a spatially inhomogeneous stationary state, regular and aperiodic “breathing structures”.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Peskov

Moscow State University

Хат алмасуға жауапты Автор.
Email: peskovnick@gmail.com

Faculty of Computational Mathematics and Cybernetics

Ресей, Leninskie Gory, Moscow, 119991

M. Slinko

Semenov Institute of Chemical Physics

Email: peskov@cs.msu.ru
Ресей, Kosygina Str., 4, Moscow, 119991

Әдебиет тізімі

  1. Schuth F., Henry B.E., Schmidt L.D. // Adv. Catal. 1995. V. 39. P. 51.
  2. Slinko M.M., Jaeger N.I. Oscillating heterogeneous catalytic systems, V. 86. Eds. B. Delmon and J.T. Yates, Elsevier, 1994.
  3. Imbihl R., Ertl G. // Chem. Rev. 1995. V. 95. P. 697.
  4. Bykov V.I., Tsybenova S.B., Yablonsky G. Chemical complexity via simple models. Berlin–Boston: Watler DeGryater GmbH, 2018.
  5. Luss D, Sheintuch M. // Catal. Today. 2005. V. 105. P. 254.
  6. Rotermund H.H. // J. Elec. Spectr. Rel. Phen. 1999. V. 98–99. P. 41.
  7. Wei H., Lilienkamp G., Imbihl R. // Chem. Phys. Lett. 2004. V. 389. P. 284.
  8. Marwaha B., Annamalai J., Luss D. // Chem. Eng. Sci. 2001. V. 56. P. 89.
  9. Lobban L., Luss D. // J. Phys. Chem. 1989. V. 93. P. 6530.
  10. Lobban L., Philippou G., Luss D. // J. Phys. Chem. 1989. V. 93. P. 733.
  11. Brown J.R., D’Netto G.A., Schmitz R.A. Temporal Order. Eds. L. Rensing and N. Jaeger. Berlin: Springer–Verlag, 1985. P. 86.
  12. Middya U., Graham M.D., Luss D., Sheintuch M. // J. Chem. Phys. 1993. V. 98. P. 2823.
  13. Middya U., Luss D. // J. Chem. Phys. 1995. V. 102. P. 5029.
  14. Sheintuch M., Nekhamkina O. // J. Chem. Phys. 1997. V. 107. P. 8165.
  15. Digilov R.M., Nekhamkina O., Sheintuch M. // A.I. Ch.E. Journal. 2004. V. 50. P. 163.
  16. Nekhamkina O., Digilov R.M., Sheintuch M. // J. Chem. Phys. 2003. V. 119. P. 2322.
  17. Bychkov V.Y., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21.
  18. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Appl. Catal. A: Gen. 2007. V. 321. P. 180.
  19. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339.
  20. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Surf. Sci. 2009. V. 603. P. 1680.
  21. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646.
  22. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Gorenberg A. Ya., Shashkin D.P., Korchak V.N. // React. Kinet. Mech. Catal. 2019. V. 128. P. 587.
  23. Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113.
  24. Kaichev V.V., Saraev A.A., Gladky A.Y., Prosvirin I.P., Blume R., Teschner D., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Phys. Rev. Lett. 2017. V. 119. P. 026001.
  25. Слинько М.М., Макеев А.Г., Бычков В.Ю., Корчак В.Н. // Кинетика и катализ. 2022. Т. 63. С. 99.
  26. Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381.
  27. Cross M., Greenside H. Pattern formation and dynamics in nonequilibrium systems, Cambridge University Press, 2009.
  28. Yelenin G.G., Makeev A.G. // Математическое моделирование. 1992. Т. 4. С. 11.
  29. Peskov N.V., Slinko M.M. Numerical simulation of self-oscillating catalytic reaction in plug-flow reactor. arXiv preprint arXiv:2303.12022. https://arxiv.org/abs/2303.12022

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Oscillatory solution of system (2) at p = 0.5 (a); oscillations of the reaction rate R at p = 0.5 and other parameters corresponding to the values ​​(3) (b).

Жүктеу (227KB)
3. Fig. 2. Spatio-temporal diagram of the oxidation state of the catalyst z(ζ, t) with the presented lines z = const for z = 0.3, 0.5, 0.7, 0.9 at p = 0.8.

Жүктеу (402KB)
4. Fig. 3. Space-time diagrams for concentrations x(ζ, t) (a) and y(ζ, t) (b). The black line is the level line z(ζ, t) = 0.7.

Жүктеу (305KB)
5. Fig. 4. Time dependence of dimensionless concentrations of oxidizer (v) and reducing agent (w) at the reactor outlet.

Жүктеу (128KB)
6. Fig. 5. Complex periodic oscillations of dimensionless concentrations of oxidizer (v) and reducing agent (w) at p = 0.97.

Жүктеу (170KB)
7. Fig. 6. Irregular oscillations of dimensionless concentrations of oxidizer (v) and reducing agent (w) at p = 1.01.

Жүктеу (157KB)
8. Fig. 7. Distribution of the degree of oxidation along the length of the catalyst in a steady state for different values ​​of p.

Жүктеу (176KB)