Mathematical modelling of a self-oscillating catalytic reaction in a flow reactor
- Autores: Peskov N.V.1, Slinko M.M.2
-
Afiliações:
- Moscow State University
- Semenov Institute of Chemical Physics
- Edição: Volume 65, Nº 2 (2024)
- Páginas: 224-232
- Seção: ARTICLES
- URL: https://stomuniver.ru/0453-8811/article/view/660358
- DOI: https://doi.org/10.31857/S0453881124020107
- EDN: https://elibrary.ru/DWLCWO
- ID: 660358
Citar
Resumo
The article is devoted to the analysis of possible spatiotemporal kinetic structures that can arise during catalytic oxidation reactions on metal surfaces at atmospheric pressure. The catalytic oscillatory reaction in a flow reactor is modeled using a 1D system of equations of the reaction–diffusion–convection type. The STM type oscillatory reaction model of catalytic oxidation is used as a kinetic model. The obtained results of mathematical modelling show the decisive influence of an axial mixing in the reactor on the development of spatiotemporal structures. It is also shown that, depending on the ratio of adsorption constants of reacting species, three different isothermal spatiotemporal structures can arise, namely a spatially inhomogeneous stationary state, regular and aperiodic “breathing structures”.
Texto integral

Sobre autores
N. Peskov
Moscow State University
Autor responsável pela correspondência
Email: peskovnick@gmail.com
Faculty of Computational Mathematics and Cybernetics
Rússia, Leninskie Gory, Moscow, 119991M. Slinko
Semenov Institute of Chemical Physics
Email: peskov@cs.msu.ru
Rússia, Kosygina Str., 4, Moscow, 119991
Bibliografia
- Schuth F., Henry B.E., Schmidt L.D. // Adv. Catal. 1995. V. 39. P. 51.
- Slinko M.M., Jaeger N.I. Oscillating heterogeneous catalytic systems, V. 86. Eds. B. Delmon and J.T. Yates, Elsevier, 1994.
- Imbihl R., Ertl G. // Chem. Rev. 1995. V. 95. P. 697.
- Bykov V.I., Tsybenova S.B., Yablonsky G. Chemical complexity via simple models. Berlin–Boston: Watler DeGryater GmbH, 2018.
- Luss D, Sheintuch M. // Catal. Today. 2005. V. 105. P. 254.
- Rotermund H.H. // J. Elec. Spectr. Rel. Phen. 1999. V. 98–99. P. 41.
- Wei H., Lilienkamp G., Imbihl R. // Chem. Phys. Lett. 2004. V. 389. P. 284.
- Marwaha B., Annamalai J., Luss D. // Chem. Eng. Sci. 2001. V. 56. P. 89.
- Lobban L., Luss D. // J. Phys. Chem. 1989. V. 93. P. 6530.
- Lobban L., Philippou G., Luss D. // J. Phys. Chem. 1989. V. 93. P. 733.
- Brown J.R., D’Netto G.A., Schmitz R.A. Temporal Order. Eds. L. Rensing and N. Jaeger. Berlin: Springer–Verlag, 1985. P. 86.
- Middya U., Graham M.D., Luss D., Sheintuch M. // J. Chem. Phys. 1993. V. 98. P. 2823.
- Middya U., Luss D. // J. Chem. Phys. 1995. V. 102. P. 5029.
- Sheintuch M., Nekhamkina O. // J. Chem. Phys. 1997. V. 107. P. 8165.
- Digilov R.M., Nekhamkina O., Sheintuch M. // A.I. Ch.E. Journal. 2004. V. 50. P. 163.
- Nekhamkina O., Digilov R.M., Sheintuch M. // J. Chem. Phys. 2003. V. 119. P. 2322.
- Bychkov V.Y., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Appl. Catal. A: Gen. 2007. V. 321. P. 180.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Surf. Sci. 2009. V. 603. P. 1680.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646.
- Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Gorenberg A. Ya., Shashkin D.P., Korchak V.N. // React. Kinet. Mech. Catal. 2019. V. 128. P. 587.
- Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113.
- Kaichev V.V., Saraev A.A., Gladky A.Y., Prosvirin I.P., Blume R., Teschner D., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Phys. Rev. Lett. 2017. V. 119. P. 026001.
- Слинько М.М., Макеев А.Г., Бычков В.Ю., Корчак В.Н. // Кинетика и катализ. 2022. Т. 63. С. 99.
- Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381.
- Cross M., Greenside H. Pattern formation and dynamics in nonequilibrium systems, Cambridge University Press, 2009.
- Yelenin G.G., Makeev A.G. // Математическое моделирование. 1992. Т. 4. С. 11.
- Peskov N.V., Slinko M.M. Numerical simulation of self-oscillating catalytic reaction in plug-flow reactor. arXiv preprint arXiv:2303.12022. https://arxiv.org/abs/2303.12022
Arquivos suplementares
