Mathematical modelling of a self-oscillating catalytic reaction in a flow reactor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the analysis of possible spatiotemporal kinetic structures that can arise during catalytic oxidation reactions on metal surfaces at atmospheric pressure. The catalytic oscillatory reaction in a flow reactor is modeled using a 1D system of equations of the reaction–diffusion–convection type. The STM type oscillatory reaction model of catalytic oxidation is used as a kinetic model. The obtained results of mathematical modelling show the decisive influence of an axial mixing in the reactor on the development of spatiotemporal structures. It is also shown that, depending on the ratio of adsorption constants of reacting species, three different isothermal spatiotemporal structures can arise, namely a spatially inhomogeneous stationary state, regular and aperiodic “breathing structures”.

Full Text

Restricted Access

About the authors

N. V. Peskov

Moscow State University

Author for correspondence.
Email: peskovnick@gmail.com

Faculty of Computational Mathematics and Cybernetics

Russian Federation, Leninskie Gory, Moscow, 119991

M. M. Slinko

Semenov Institute of Chemical Physics

Email: peskov@cs.msu.ru
Russian Federation, Kosygina Str., 4, Moscow, 119991

References

  1. Schuth F., Henry B.E., Schmidt L.D. // Adv. Catal. 1995. V. 39. P. 51.
  2. Slinko M.M., Jaeger N.I. Oscillating heterogeneous catalytic systems, V. 86. Eds. B. Delmon and J.T. Yates, Elsevier, 1994.
  3. Imbihl R., Ertl G. // Chem. Rev. 1995. V. 95. P. 697.
  4. Bykov V.I., Tsybenova S.B., Yablonsky G. Chemical complexity via simple models. Berlin–Boston: Watler DeGryater GmbH, 2018.
  5. Luss D, Sheintuch M. // Catal. Today. 2005. V. 105. P. 254.
  6. Rotermund H.H. // J. Elec. Spectr. Rel. Phen. 1999. V. 98–99. P. 41.
  7. Wei H., Lilienkamp G., Imbihl R. // Chem. Phys. Lett. 2004. V. 389. P. 284.
  8. Marwaha B., Annamalai J., Luss D. // Chem. Eng. Sci. 2001. V. 56. P. 89.
  9. Lobban L., Luss D. // J. Phys. Chem. 1989. V. 93. P. 6530.
  10. Lobban L., Philippou G., Luss D. // J. Phys. Chem. 1989. V. 93. P. 733.
  11. Brown J.R., D’Netto G.A., Schmitz R.A. Temporal Order. Eds. L. Rensing and N. Jaeger. Berlin: Springer–Verlag, 1985. P. 86.
  12. Middya U., Graham M.D., Luss D., Sheintuch M. // J. Chem. Phys. 1993. V. 98. P. 2823.
  13. Middya U., Luss D. // J. Chem. Phys. 1995. V. 102. P. 5029.
  14. Sheintuch M., Nekhamkina O. // J. Chem. Phys. 1997. V. 107. P. 8165.
  15. Digilov R.M., Nekhamkina O., Sheintuch M. // A.I. Ch.E. Journal. 2004. V. 50. P. 163.
  16. Nekhamkina O., Digilov R.M., Sheintuch M. // J. Chem. Phys. 2003. V. 119. P. 2322.
  17. Bychkov V.Y., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21.
  18. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Appl. Catal. A: Gen. 2007. V. 321. P. 180.
  19. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339.
  20. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Korchak V.N. // Surf. Sci. 2009. V. 603. P. 1680.
  21. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646.
  22. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Gorenberg A. Ya., Shashkin D.P., Korchak V.N. // React. Kinet. Mech. Catal. 2019. V. 128. P. 587.
  23. Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113.
  24. Kaichev V.V., Saraev A.A., Gladky A.Y., Prosvirin I.P., Blume R., Teschner D., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Phys. Rev. Lett. 2017. V. 119. P. 026001.
  25. Слинько М.М., Макеев А.Г., Бычков В.Ю., Корчак В.Н. // Кинетика и катализ. 2022. Т. 63. С. 99.
  26. Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381.
  27. Cross M., Greenside H. Pattern formation and dynamics in nonequilibrium systems, Cambridge University Press, 2009.
  28. Yelenin G.G., Makeev A.G. // Математическое моделирование. 1992. Т. 4. С. 11.
  29. Peskov N.V., Slinko M.M. Numerical simulation of self-oscillating catalytic reaction in plug-flow reactor. arXiv preprint arXiv:2303.12022. https://arxiv.org/abs/2303.12022

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oscillatory solution of system (2) at p = 0.5 (a); oscillations of the reaction rate R at p = 0.5 and other parameters corresponding to the values ​​(3) (b).

Download (227KB)
3. Fig. 2. Spatio-temporal diagram of the oxidation state of the catalyst z(ζ, t) with the presented lines z = const for z = 0.3, 0.5, 0.7, 0.9 at p = 0.8.

Download (402KB)
4. Fig. 3. Space-time diagrams for concentrations x(ζ, t) (a) and y(ζ, t) (b). The black line is the level line z(ζ, t) = 0.7.

Download (305KB)
5. Fig. 4. Time dependence of dimensionless concentrations of oxidizer (v) and reducing agent (w) at the reactor outlet.

Download (128KB)
6. Fig. 5. Complex periodic oscillations of dimensionless concentrations of oxidizer (v) and reducing agent (w) at p = 0.97.

Download (170KB)
7. Fig. 6. Irregular oscillations of dimensionless concentrations of oxidizer (v) and reducing agent (w) at p = 1.01.

Download (157KB)
8. Fig. 7. Distribution of the degree of oxidation along the length of the catalyst in a steady state for different values ​​of p.

Download (176KB)