Non-conservative cascades in MHD turbulence

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In fully developed turbulence, according to Kolmogorov's hypothesis, an extended range of scales, called the inertial range, exists, in which neither external nor viscous forces play an appreciable role, and all statistical properties are determined by the dissipation rate of kinetic energy. Turbulent flows, in which the influence of external forces on scales corresponding to the inertial interval is of fundamental importance, are common in nature. Then, the usual integrals of motion, such as the energy of velocity pulsations, hydrodynamic helicity, etc. cease to be so and other quadratic quantities that include scale dependence become integrals of motion. At the same time, from the point of view of the usual integrals of motion, cascade processes become non-conservative. In this work, this idea is developed in frame of shell models of MHD-turbulence. The approach introduced allows us to describe some special regimes of cascade processes in MHD-turbulence.

作者简介

P. Frick

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences

Email: frick@icmm.ru
Perm, Russia

A. Shestakov

Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences

Perm, Russia

参考

  1. Колмогоров А.Н. // Докл. АН СССР. 1941. Т. 30. С. 9.
  2. Biferale L. // Annu Rev. Fluid Mech. 2003. V. 35. P. 441.
  3. Фрик П.Г. Турбулентность: подходы и модели. Изд. 2-е, испр. и доп. М.: Ижевск: НИЦ «Регулярная и хаотическая динамика», 2010. 332 с.
  4. Plunian F., Stepanov R., Frick P. // Phys. Reports. 2013. V. 523. No. 1. P. 1.
  5. Frick P., Shestakov A. // Russ. J. Nonlinear Dynam. 2023. V. 19. No. 3. P. 321.
  6. Гледзер Е.Б., Должанский Ф.В., Обухов А.М. Системы гидродинамического типа и их применение. М.: Наука, 1981. 368 с.
  7. Фрик П.Г. // Магн. гидродинам. 1984. № 3. С. 48; Frick P.G. // Magnetohydrodynamics. 1984. V. 20. No. 3. P. 262.
  8. Biferale L., Lambert A., Lima R., Paladin G. // Phys. D. Nonlinear Phenom. 1995. V. 80. P. 105.
  9. Frick P., Dubrulle B., Babiano A. // Phys. Rev. E. 1995. V. 51. No. 6. P. 5582.
  10. Frick P., Sokoloff D. // Phys. Rev. E. 1998. V. 57. No. 4. P. 4155.
  11. Антонов Т.Ю., Фрик П.Г. // Вестн. ПГТУ. Матем. модел. сист. и проц. 2000. № 8. С. 1.
  12. Мизева И.А., Степанов Р.А., Фрик П.Г. // ДАН. 2009. Т. 424. № 4. С.479.
  13. Решетняк М.Ю., Соколов Д.Д., Фрик П.Г. // Изв. РАН. Сер. физ. 2003. Т. 67. № 3. С. 300.
  14. Обухов А.М., // Изв. АН СССР. Физ. атмосф. и океана. 1971. № 7. С. 695.
  15. Lorenz E.N. // J. Fluid Mech. 1972. V. 55. P. 545.
  16. Yamada M., Okhtiani K. // J. Phys. Soc. Japan. 1987. V. 56. P. 4210.
  17. Гледзер Е.Б. // Докл. АН СССР. 1973. Т. 209. № 5. С. 1046.
  18. Gloaguen C., Léorat J., Pouquet A., Grappin R. // Phys. D. Nonlinear Phenom. 1985. V. 17. No. 2. P. 164.
  19. Grappin R., Léorat J., Pouquet A. // J. Physics. (France). 1986. V. 47. P. 1127.
  20. Carbone V. // Phys. Rev. E. 1994. V. 50. P. 671.
  21. Biskamp D. // Phys. Rev. E. 1994. V. 50. P. 2702.
  22. Обухов А.M. // Докл. АН СССР. 1959. Т. 125. С. 1246.
  23. Bolgiano R. // J. Geophys. Res. 1959. V. 64. P. 2226.
  24. Stepanov R., Frick P., Shestakov A. // Phys. Rev. Fluids. 2023. V. 8. Art. No. L052601.
  25. Kraichnan R.H. // Phys. Fluids. 1965. V. 8. P. 1385.
  26. Ирошников П.С. // Астрон. журн. 1963. № 4. С. 742.
  27. Müller W.C., Biskamp D. // Phys. Rev. Lett. 2000. V. 84 P. 475.
  28. Müller W.C., Grappin R. // Phys. Rev. Lett. 2005. V. 95. No. 11. Art. No. 114502.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025