Fabrication of optical Yb: YAG ceramics by pressure slip casting method with subsequent vibro-impact effect

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Yb: YAG ceramic samples with a thickness of 7 mm and more were manufactured using pressure slip casting method. The samples were obtained by solid-phase synthesis using commercially available Al2O3, Y2O3 and Yb2O3 powders. Optical transmission spectra were recorded. It was shown that pressing with vibro-impact effect as a method of additional compaction is more preferable than simple uniaxial pressing, since it yields ceramics with higher optical quality.

Sobre autores

S. Kozlova

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

K. Lopukhin

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

V. Balashov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

T. Listkov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

A. Efimov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Autor responsável pela correspondência
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

Bibliografia

  1. Giesen A., Hügel H., Voss A. et al. // Appl. Phys. B. 1994. V. 58. № 5. P. 365.
  2. doi.org/10.1007/BF01081875
  3. Rutherford T.S., Tulloch W.M., Gustafson E.K. et al. // IEEE J. Quantum Electron. 2000. V. 36. № 2. P. 205.
  4. doi.org/10.1109/3.823467
  5. Yamamoto R.M., Parker J.M., Allen K.L. et al. // Proc. SPIE. 2007. V. 6552. P. 655205.
  6. doi.org/10.1117/12.720965
  7. Li J., Zhou J., Pan Y. et al. // J. Amer. Ceram. Soc. 2012. V. 95. № 3. P. 1029.
  8. doi.org/10.1111/j.1551-2916.2011.04915.x
  9. Zhang W., Pan Y., Zhou J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 10. P. 2434.
  10. doi.org/10.1111/j.1551-2916.2009.03220.x
  11. Zhang W.X., Zhou J., Liu W.B. et al. // J. Alloys Compound. 2010. V. 506. № 2. P. 745.
  12. doi.org/10.1016/j.jallcom.2010.07.059
  13. Caslavsky J.L., Viechnicki D.J. // J. Mater. Sci. 1980. V. 15. № 7. P. 1709.
  14. doi.org/10.1007/BF00550589
  15. Ikesue A., Aung Y.L., Taira T. et al.//Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
  16. doi.org/10.1146/annurev.matsci.36.011205.152926
  17. Innerhofer E., Südmeyer T., Brunner F. et al. // Opt. Lett. 2003. V. 28. № 5. P. 367.
  18. doi.org/10.1364/OL.28.000367
  19. Latham W.P., Lobad A., Newell T.C. et al. // AIP Conf. Proc. 2010. V. 1278. № 1. P. 758.
  20. Boulesteix R., Goldstein A., Perrière C. et al. // J. Europ. Ceram. Soc. 2021. V. 41. № 3. P. 2085.
  21. doi.org/10.1016/j.jeurceramsoc.2020.11.003
  22. Xu Y., Mao X., Fan J. et al. // Ceram. Int. 2017. V. 43. № 12. P. 8839.
  23. doi.org/10.1016/j.ceramint.2017.04.017
  24. Sanghera J., Kim W., Villalobos G. et al. // Materials. 2012. V. 5. № 2. P. 258.
  25. doi.org/10.3390/ma5020258

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025