Fabrication of optical Yb: YAG ceramics by pressure slip casting method with subsequent vibro-impact effect
- Autores: Kozlova S.M.1, Lopukhin K.V.1, Balashov V.V.1, Listkov T.V.1, Efimov A.A.1
-
Afiliações:
- Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
- Edição: Volume 70, Nº 10 (2025)
- Páginas: 997-1000
- Seção: TO THE 70th ANNIVERSARY OF THE KOTELNIKOV IRE RAS
- URL: https://stomuniver.ru/0033-8494/article/view/696911
- DOI: https://doi.org/10.7868/S3034590125100149
- ID: 696911
Citar
Texto integral
Resumo
Yb: YAG ceramic samples with a thickness of 7 mm and more were manufactured using pressure slip casting method. The samples were obtained by solid-phase synthesis using commercially available Al2O3, Y2O3 and Yb2O3 powders. Optical transmission spectra were recorded. It was shown that pressing with vibro-impact effect as a method of additional compaction is more preferable than simple uniaxial pressing, since it yields ceramics with higher optical quality.
Palavras-chave
Sobre autores
S. Kozlova
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
K. Lopukhin
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
V. Balashov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
T. Listkov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
A. Efimov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Autor responsável pela correspondência
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
Bibliografia
- Giesen A., Hügel H., Voss A. et al. // Appl. Phys. B. 1994. V. 58. № 5. P. 365.
- doi.org/10.1007/BF01081875
- Rutherford T.S., Tulloch W.M., Gustafson E.K. et al. // IEEE J. Quantum Electron. 2000. V. 36. № 2. P. 205.
- doi.org/10.1109/3.823467
- Yamamoto R.M., Parker J.M., Allen K.L. et al. // Proc. SPIE. 2007. V. 6552. P. 655205.
- doi.org/10.1117/12.720965
- Li J., Zhou J., Pan Y. et al. // J. Amer. Ceram. Soc. 2012. V. 95. № 3. P. 1029.
- doi.org/10.1111/j.1551-2916.2011.04915.x
- Zhang W., Pan Y., Zhou J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 10. P. 2434.
- doi.org/10.1111/j.1551-2916.2009.03220.x
- Zhang W.X., Zhou J., Liu W.B. et al. // J. Alloys Compound. 2010. V. 506. № 2. P. 745.
- doi.org/10.1016/j.jallcom.2010.07.059
- Caslavsky J.L., Viechnicki D.J. // J. Mater. Sci. 1980. V. 15. № 7. P. 1709.
- doi.org/10.1007/BF00550589
- Ikesue A., Aung Y.L., Taira T. et al.//Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
- doi.org/10.1146/annurev.matsci.36.011205.152926
- Innerhofer E., Südmeyer T., Brunner F. et al. // Opt. Lett. 2003. V. 28. № 5. P. 367.
- doi.org/10.1364/OL.28.000367
- Latham W.P., Lobad A., Newell T.C. et al. // AIP Conf. Proc. 2010. V. 1278. № 1. P. 758.
- Boulesteix R., Goldstein A., Perrière C. et al. // J. Europ. Ceram. Soc. 2021. V. 41. № 3. P. 2085.
- doi.org/10.1016/j.jeurceramsoc.2020.11.003
- Xu Y., Mao X., Fan J. et al. // Ceram. Int. 2017. V. 43. № 12. P. 8839.
- doi.org/10.1016/j.ceramint.2017.04.017
- Sanghera J., Kim W., Villalobos G. et al. // Materials. 2012. V. 5. № 2. P. 258.
- doi.org/10.3390/ma5020258
Arquivos suplementares

