Fabrication of optical Yb: YAG ceramics by pressure slip casting method with subsequent vibro-impact effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Yb: YAG ceramic samples with a thickness of 7 mm and more were manufactured using pressure slip casting method. The samples were obtained by solid-phase synthesis using commercially available Al2O3, Y2O3 and Yb2O3 powders. Optical transmission spectra were recorded. It was shown that pressing with vibro-impact effect as a method of additional compaction is more preferable than simple uniaxial pressing, since it yields ceramics with higher optical quality.

About the authors

S. M. Kozlova

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

K. V. Lopukhin

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

V. V. Balashov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

T. V. Listkov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

A. A. Efimov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Author for correspondence.
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

References

  1. Giesen A., Hügel H., Voss A. et al. // Appl. Phys. B. 1994. V. 58. № 5. P. 365.
  2. doi.org/10.1007/BF01081875
  3. Rutherford T.S., Tulloch W.M., Gustafson E.K. et al. // IEEE J. Quantum Electron. 2000. V. 36. № 2. P. 205.
  4. doi.org/10.1109/3.823467
  5. Yamamoto R.M., Parker J.M., Allen K.L. et al. // Proc. SPIE. 2007. V. 6552. P. 655205.
  6. doi.org/10.1117/12.720965
  7. Li J., Zhou J., Pan Y. et al. // J. Amer. Ceram. Soc. 2012. V. 95. № 3. P. 1029.
  8. doi.org/10.1111/j.1551-2916.2011.04915.x
  9. Zhang W., Pan Y., Zhou J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 10. P. 2434.
  10. doi.org/10.1111/j.1551-2916.2009.03220.x
  11. Zhang W.X., Zhou J., Liu W.B. et al. // J. Alloys Compound. 2010. V. 506. № 2. P. 745.
  12. doi.org/10.1016/j.jallcom.2010.07.059
  13. Caslavsky J.L., Viechnicki D.J. // J. Mater. Sci. 1980. V. 15. № 7. P. 1709.
  14. doi.org/10.1007/BF00550589
  15. Ikesue A., Aung Y.L., Taira T. et al.//Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
  16. doi.org/10.1146/annurev.matsci.36.011205.152926
  17. Innerhofer E., Südmeyer T., Brunner F. et al. // Opt. Lett. 2003. V. 28. № 5. P. 367.
  18. doi.org/10.1364/OL.28.000367
  19. Latham W.P., Lobad A., Newell T.C. et al. // AIP Conf. Proc. 2010. V. 1278. № 1. P. 758.
  20. Boulesteix R., Goldstein A., Perrière C. et al. // J. Europ. Ceram. Soc. 2021. V. 41. № 3. P. 2085.
  21. doi.org/10.1016/j.jeurceramsoc.2020.11.003
  22. Xu Y., Mao X., Fan J. et al. // Ceram. Int. 2017. V. 43. № 12. P. 8839.
  23. doi.org/10.1016/j.ceramint.2017.04.017
  24. Sanghera J., Kim W., Villalobos G. et al. // Materials. 2012. V. 5. № 2. P. 258.
  25. doi.org/10.3390/ma5020258

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences