Investigation of kinetic mechanisms of photocatalytic hydrogen generation from formic aside using metal-ceramic composites under visible-light irradiation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Processes of photocatalytic hydrogen generation from the formic acid water solution under vis-light irradiation with tantalum contained metal-ceramic silicon nitride-based composites were investigated depending on pH of the solution and hydrogen peroxide adding. These compounds were obtained by self-propagated high temperature (SHS) synthesis in the way of the ferrosilicoaluminum (FSA) and silicon-aluminum powders ignition in a nitrogen atmosphere with the tantalum addition. During the investigation it was found out that the reaction rate of the hydrogen production without hydrogen peroxide can be described within the Langmuir–Hinshelwood mechanism. There is the reaction mechanism changing simultaneously with a formic acid concentration increasing in the presence of H2O2. The most significant reaction rate of hydrogen production from HCOOH is observed with the Fe-contained composite synthesized from FSA in the solution system without H2O2 addition, the reaction turns of frequency (TOF) is 4.55 µmol/min.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Skvortsova

National Research Tomsk State University

Хат алмасуға жауапты Автор.
Email: lnskvorcova@inbox.ru
Ресей, Lenin Ave., 36, Tomsk, 634050

I. Artyukh

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Ресей, Lenin Ave., 36, Tomsk, 634050

T. Tatarinova

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Ресей, Lenin Ave., 36, Tomsk, 634050

K. Bolgaru

Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: lnskvorcova@inbox.ru
Ресей, Akademichesky Ave., 10/4, Tomsk, 634055

Әдебиет тізімі

  1. Jamali-Sheini F., Cheraghizade M., Yousefi R. // Solid State Sci. 2018. V. 79. P. 30. https://doi.org/10.1088/1361-6641/ab0723
  2. Acar C., Dincer I., Naterer G.F. // Int. J. Energy Res. 2016. V. 40. № 11. P. 1449. https://doi.org/10.1002/er.3549
  3. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanova S.V., Parmon V.N. // Int. J. Hydrogen Energy. 2017. V. 42. № 51. P. 30067. https://doi.org/10.1016/j.ijhydene.2017.10.104
  4. Pilemalm R., Pourovskii L., Mosyagin I., Simak S., Eklund P. // Condens. Matter. 2019. V. 4. Р. 36. https://doi.org/10.3390/condmat4020036
  5. Журенок А.В., Марковская Д.В., Потапенко К.О., Сидоренко Н.Д., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2023. Т. 64. № 3. С. 276. https://doi.org/10.31857/S0453881123030139
  6. Kumaravel V., Mathew S., Bartlett J., Pillai S.C. // Appl. Catal. B: Environ. 2019. V. 244. P. 1021. https://doi.org/10.1016/j.apcatb.2018.11.080
  7. Fajrina N., Tahir M. //Int. J. of Hydrogen Energy. 2019. V. 44. N2. P. 540–577.
  8. Huang J., Li R., Li D., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. // J. Hazard. Mater. 2020. V. 386. P. 121634.
  9. Liang Y., Li W., Wang X., Zhou R., Ding H. // Ceramics Int. 2022. V. 48. № 2. P. 2826. https://doi.org/10.1016/j.ceramint.2021.10.072.
  10. Silva B.A., Silva J.C.G., González S.Y.G., Moreira R.F.P., Peralta R.A., Notza https://www.sciencedirect.com/author/9939927800/dachamir-hotzaD., de Noni A. Junior // Ceramics Int. 2022. V. 48. № 22. P. 32917. https://doi.org/10.1016/j.ceramint.2022.07.221
  11. Ullah H., Tahir A.A., Bibi S., Mallick T.K., Karazhanov S. Zh. // Appl. Catal. B: Environ. 2018. V. 229. P. 24. https://doi.org/10.1016/J.APCATB.2018.02.001
  12. Ma Y., Yumeng F., Wang M., Liang X. // J. Energy Chem. 2021. V. 56. P. 353.
  13. Fang C.M., Orhan E., de Wijs G.A., Hintzen H.T. // J. Mater. Chem. 2001. № 11. P. 1248. https://doi.org/10.1039/В005751G
  14. Орлов В.М., Седнева Т.А. https://elibrary.ru/item.asp?id=28100298 // Перспективные материалы. 2017. № 1. С. 5.
  15. Li D., Zeng L., Li B., Yang X., Yu Q., Wu Z. // Mater. Des. 2020. V. 187. P. 108416. https://doi.org/10.1016/j.matdes.2019.108416
  16. Skvortsova L.N., Chukhlomina L.N., Minakova T.S., Sherstoboeva M.V. // Rus. J. Appl. Chem. 2017. № 90. P. 1246.
  17. Artiukh I.A., Bolgaru K.A., Dychko K.A., Bavykina A.V., Sastre F., Skvortsova L.N. // J. ChemistrySelect. 2021. № 6. P. 10025. https://doi.org/10.1002/slct.202102014
  18. Bacardit J., Stotzner J., Chamarro E. // Ind. Eng. Chem. Res. 2007. V. 46. № 23. P. 7615.
  19. Wadley S., Waite T.D. Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2004. P. 111–135.
  20. Jin O., Lu B., Tao Y.P.X, Himmelhaver C., ShenY., Gu S., Zeng Y., Li X.Y. // Catal. Today. 2019. № 3. Р. 324. https://doi.org/10.1016/j.cattod.2019.12.006
  21. Junge H., Boddien A., Capitta F., Loges B., Noyes J.R., Gladiali S., Beller M. // Tetrahedron Lett. 2009. V. 50. № 14. Р.1603.
  22. Fellay C., Dyson P.J., Laurenczy G.A. // Angew. Chem. Int. Edit. 2008. V. 47. № 21. P. 3966.
  23. Клопотов А.А., Абзаев Ю.А., Потекаев А.И., Волокитин О.Г. Основы рентгеноструктурного анализа в материаловедении. Томск: Изд-во ТГАСУ, 2012. 276 с.
  24. Скворцова Л.Н., Казанцева К.И., Болгару К.А., Артюх И.А., Регер А.А., Дычко К.А. // Неорганические материалы. 2023. № 3. С. 333. https://doi.org/10.1134/S0020168523030123
  25. Гриценко В.А. // Успехи физических наук. 2012. Т. 182. № 5. С. 531.
  26. Farias J., Albizzatti E.D., Alfano O.M. // Catal. Today. 2009. V. 144. P. 117.
  27. Tian Y.C., Fang W.H. // J. Phys. Chem. A. 2006. V. 110. P. 11704.
  28. Pozdnyakov I.P., Glebov E.M., Plyusnin V.F., Grivin V.P., Ivanov Y.V., Vorobyev D.Y., Bazhin N.M. // Pure Appl. Chem. 2000. V. 72. № 11. P. 2187.
  29. Ohtani B. // Chem. Lett. 2008. V. 37. P. 217.
  30. Ohtani B. // Phys. Chem. 2014. V. 16. № 5. P. 1788.
  31. Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. // Catal. Lett. 2008. V. 122. P. 26.
  32. Куренкова А.Ю., Козлова Е.А. Каичев В.В. // Кинетика и катализ. 2020. Т. 61. № 6. С. 812. https://doi.org/10.31857/S0453881120060052
  33. Puga A.V. // Coord. Chem. Rev. 2016. V. 315. P. 1. https://doi.org/10.1016/j.ccr.2015.12.009

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Emission spectrum of the DIORA 30 LED lamp.

Жүктеу (170KB)
3. Fig. 2. Fragments of diffraction patterns of nitrided samples of a mixture of powders (Si + Al + Ta, 10 wt.%) (Si3N4/Ta) and (FSA + Ta, 10 wt.%) (Si3N4/Ta/Fe): 1 – β-Si3N4, 2 – AlN, 3 – Si, 4 – TaN, 5 – TaON, 6 – TaO, 7 – α-Fe, 8 – FexSiy, 9 – Ta2O5.

Жүктеу (172KB)
4. Fig. 3. SEM images of composites (a, b) synthesized from FSA and a mixture of silicon and aluminum powders with the addition of tantalum, and distribution maps (c, d) of Ta over the surface.

Жүктеу (989KB)
5. Fig. 4. Dependence of the absorption coefficient on the photon energy for composites Si3N4/Ta/Fe (a), Si3N4/Ta (b).

Жүктеу (233KB)
6. Fig. 5. Adsorption isotherms of HCOOH on composites.

Жүктеу (142KB)
7. Fig. 6. Dependence of the rate of H2 evolution from HCOOH on the Si3N4/Ta/Fe composite on the pH of the solution.

Жүктеу (100KB)
8. Fig. 7. Dependence of the rate of H2 evolution on composites on the initial concentration of HCOOH in the absence and with the addition of H2O2.

Жүктеу (179KB)
9. Fig. 8. Approximation in coordinates of the Langmuir–Hinshelwood equation of experimental data under different experimental conditions: a – Si3N4/Ta; b – Si3N4/Ta/Fe; c – Si3N4/Ta/H2O2, d – Si3N4/Ta/Fe/H2O2 (С0 = 0.026–0.26 M); d – Si3N4/Ta/H2O2, e – Si3N4/Ta/Fe/H2O2 (С0 = 0.4–1.0 M).

Жүктеу (534KB)