Investigation of kinetic mechanisms of photocatalytic hydrogen generation from formic aside using metal-ceramic composites under visible-light irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Processes of photocatalytic hydrogen generation from the formic acid water solution under vis-light irradiation with tantalum contained metal-ceramic silicon nitride-based composites were investigated depending on pH of the solution and hydrogen peroxide adding. These compounds were obtained by self-propagated high temperature (SHS) synthesis in the way of the ferrosilicoaluminum (FSA) and silicon-aluminum powders ignition in a nitrogen atmosphere with the tantalum addition. During the investigation it was found out that the reaction rate of the hydrogen production without hydrogen peroxide can be described within the Langmuir–Hinshelwood mechanism. There is the reaction mechanism changing simultaneously with a formic acid concentration increasing in the presence of H2O2. The most significant reaction rate of hydrogen production from HCOOH is observed with the Fe-contained composite synthesized from FSA in the solution system without H2O2 addition, the reaction turns of frequency (TOF) is 4.55 µmol/min.

Full Text

Restricted Access

About the authors

L. N. Skvortsova

National Research Tomsk State University

Author for correspondence.
Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

I. A. Artyukh

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

T. V. Tatarinova

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

K. A. Bolgaru

Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: lnskvorcova@inbox.ru
Russian Federation, Akademichesky Ave., 10/4, Tomsk, 634055

References

  1. Jamali-Sheini F., Cheraghizade M., Yousefi R. // Solid State Sci. 2018. V. 79. P. 30. https://doi.org/10.1088/1361-6641/ab0723
  2. Acar C., Dincer I., Naterer G.F. // Int. J. Energy Res. 2016. V. 40. № 11. P. 1449. https://doi.org/10.1002/er.3549
  3. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanova S.V., Parmon V.N. // Int. J. Hydrogen Energy. 2017. V. 42. № 51. P. 30067. https://doi.org/10.1016/j.ijhydene.2017.10.104
  4. Pilemalm R., Pourovskii L., Mosyagin I., Simak S., Eklund P. // Condens. Matter. 2019. V. 4. Р. 36. https://doi.org/10.3390/condmat4020036
  5. Журенок А.В., Марковская Д.В., Потапенко К.О., Сидоренко Н.Д., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2023. Т. 64. № 3. С. 276. https://doi.org/10.31857/S0453881123030139
  6. Kumaravel V., Mathew S., Bartlett J., Pillai S.C. // Appl. Catal. B: Environ. 2019. V. 244. P. 1021. https://doi.org/10.1016/j.apcatb.2018.11.080
  7. Fajrina N., Tahir M. //Int. J. of Hydrogen Energy. 2019. V. 44. N2. P. 540–577.
  8. Huang J., Li R., Li D., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. // J. Hazard. Mater. 2020. V. 386. P. 121634.
  9. Liang Y., Li W., Wang X., Zhou R., Ding H. // Ceramics Int. 2022. V. 48. № 2. P. 2826. https://doi.org/10.1016/j.ceramint.2021.10.072.
  10. Silva B.A., Silva J.C.G., González S.Y.G., Moreira R.F.P., Peralta R.A., Notza https://www.sciencedirect.com/author/9939927800/dachamir-hotzaD., de Noni A. Junior // Ceramics Int. 2022. V. 48. № 22. P. 32917. https://doi.org/10.1016/j.ceramint.2022.07.221
  11. Ullah H., Tahir A.A., Bibi S., Mallick T.K., Karazhanov S. Zh. // Appl. Catal. B: Environ. 2018. V. 229. P. 24. https://doi.org/10.1016/J.APCATB.2018.02.001
  12. Ma Y., Yumeng F., Wang M., Liang X. // J. Energy Chem. 2021. V. 56. P. 353.
  13. Fang C.M., Orhan E., de Wijs G.A., Hintzen H.T. // J. Mater. Chem. 2001. № 11. P. 1248. https://doi.org/10.1039/В005751G
  14. Орлов В.М., Седнева Т.А. https://elibrary.ru/item.asp?id=28100298 // Перспективные материалы. 2017. № 1. С. 5.
  15. Li D., Zeng L., Li B., Yang X., Yu Q., Wu Z. // Mater. Des. 2020. V. 187. P. 108416. https://doi.org/10.1016/j.matdes.2019.108416
  16. Skvortsova L.N., Chukhlomina L.N., Minakova T.S., Sherstoboeva M.V. // Rus. J. Appl. Chem. 2017. № 90. P. 1246.
  17. Artiukh I.A., Bolgaru K.A., Dychko K.A., Bavykina A.V., Sastre F., Skvortsova L.N. // J. ChemistrySelect. 2021. № 6. P. 10025. https://doi.org/10.1002/slct.202102014
  18. Bacardit J., Stotzner J., Chamarro E. // Ind. Eng. Chem. Res. 2007. V. 46. № 23. P. 7615.
  19. Wadley S., Waite T.D. Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2004. P. 111–135.
  20. Jin O., Lu B., Tao Y.P.X, Himmelhaver C., ShenY., Gu S., Zeng Y., Li X.Y. // Catal. Today. 2019. № 3. Р. 324. https://doi.org/10.1016/j.cattod.2019.12.006
  21. Junge H., Boddien A., Capitta F., Loges B., Noyes J.R., Gladiali S., Beller M. // Tetrahedron Lett. 2009. V. 50. № 14. Р.1603.
  22. Fellay C., Dyson P.J., Laurenczy G.A. // Angew. Chem. Int. Edit. 2008. V. 47. № 21. P. 3966.
  23. Клопотов А.А., Абзаев Ю.А., Потекаев А.И., Волокитин О.Г. Основы рентгеноструктурного анализа в материаловедении. Томск: Изд-во ТГАСУ, 2012. 276 с.
  24. Скворцова Л.Н., Казанцева К.И., Болгару К.А., Артюх И.А., Регер А.А., Дычко К.А. // Неорганические материалы. 2023. № 3. С. 333. https://doi.org/10.1134/S0020168523030123
  25. Гриценко В.А. // Успехи физических наук. 2012. Т. 182. № 5. С. 531.
  26. Farias J., Albizzatti E.D., Alfano O.M. // Catal. Today. 2009. V. 144. P. 117.
  27. Tian Y.C., Fang W.H. // J. Phys. Chem. A. 2006. V. 110. P. 11704.
  28. Pozdnyakov I.P., Glebov E.M., Plyusnin V.F., Grivin V.P., Ivanov Y.V., Vorobyev D.Y., Bazhin N.M. // Pure Appl. Chem. 2000. V. 72. № 11. P. 2187.
  29. Ohtani B. // Chem. Lett. 2008. V. 37. P. 217.
  30. Ohtani B. // Phys. Chem. 2014. V. 16. № 5. P. 1788.
  31. Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. // Catal. Lett. 2008. V. 122. P. 26.
  32. Куренкова А.Ю., Козлова Е.А. Каичев В.В. // Кинетика и катализ. 2020. Т. 61. № 6. С. 812. https://doi.org/10.31857/S0453881120060052
  33. Puga A.V. // Coord. Chem. Rev. 2016. V. 315. P. 1. https://doi.org/10.1016/j.ccr.2015.12.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Emission spectrum of the DIORA 30 LED lamp.

Download (170KB)
3. Fig. 2. Fragments of diffraction patterns of nitrided samples of a mixture of powders (Si + Al + Ta, 10 wt.%) (Si3N4/Ta) and (FSA + Ta, 10 wt.%) (Si3N4/Ta/Fe): 1 – β-Si3N4, 2 – AlN, 3 – Si, 4 – TaN, 5 – TaON, 6 – TaO, 7 – α-Fe, 8 – FexSiy, 9 – Ta2O5.

Download (172KB)
4. Fig. 3. SEM images of composites (a, b) synthesized from FSA and a mixture of silicon and aluminum powders with the addition of tantalum, and distribution maps (c, d) of Ta over the surface.

Download (989KB)
5. Fig. 4. Dependence of the absorption coefficient on the photon energy for composites Si3N4/Ta/Fe (a), Si3N4/Ta (b).

Download (233KB)
6. Fig. 5. Adsorption isotherms of HCOOH on composites.

Download (142KB)
7. Fig. 6. Dependence of the rate of H2 evolution from HCOOH on the Si3N4/Ta/Fe composite on the pH of the solution.

Download (100KB)
8. Fig. 7. Dependence of the rate of H2 evolution on composites on the initial concentration of HCOOH in the absence and with the addition of H2O2.

Download (179KB)
9. Fig. 8. Approximation in coordinates of the Langmuir–Hinshelwood equation of experimental data under different experimental conditions: a – Si3N4/Ta; b – Si3N4/Ta/Fe; c – Si3N4/Ta/H2O2, d – Si3N4/Ta/Fe/H2O2 (С0 = 0.026–0.26 M); d – Si3N4/Ta/H2O2, e – Si3N4/Ta/Fe/H2O2 (С0 = 0.4–1.0 M).

Download (534KB)