Kinetic description of deactivation of a supplied nickel catalyst by sodium sulphide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetics of reactions of liquid-phase hydrogenation of sodium acrylate on catalysts has been studied. Ni/SiO2 with different amounts of deposited nickel were used as a catalyst, as well as samples with controlled partial deactivation of the surface by sulfide ion. Approaches to determining the amount of reduced metal on the catalyst surface and the amount of catalytic poison required to deactivate active centers are shown. Hydrogenation reaction rates and activity were measured. Kinetics were modeled, and rate constants of hydrogenation, adsorption, and desorption of hydrogen were obtained. The number of active centers and their ratio to metal atoms located on the catalyst surface were estimated.

作者简介

Yu. Romanenko

Ivanovo State University of Chemistry and Technology

编辑信件的主要联系方式.
Email: Romanenko@isuct.ru
俄罗斯联邦, Ivanovo, 153000

A. Afineevskii

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
俄罗斯联邦, Ivanovo, 153000

D. Prozorov

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
俄罗斯联邦, Ivanovo, 153000

N. Gordina

Ivanovo State University of Chemistry and Technology

Email: Romanenko@isuct.ru
俄罗斯联邦, Ivanovo, 153000

参考

  1. Afineevskii A.V., Prozorov D.A., Knyazev A.V., Osadchaya T.Y. // ChemistrySelect. 2020. V. 5. № 3. P. 1007. doi: 10.1002/slct.201903608
  2. Singh U.K., Vannice M.A. // Appl. Catal. A: Gen. 2001. V. 213. № 1. P. 1. doi: 10.1016/S0926-860X(00)00885-1
  3. Herron J.A., Tonelli S., Mavrikakis M. // Surf. Sci. 2012. V. 606. № 21–22. P. 1670. doi: 10.1016/j.susc.2012.07.003
  4. Ceyer S.T. // Acc. Chem. Res. 2001. V. 34. № 9. P. 737. doi: 10.1021/ar970030f
  5. Прозоров Д.А., Лукин М.В., Улитин М.В. // Изв. вузов. Химия и хим. технология. 2010. Т. 53. Вып. 2. С. 125.
  6. Li J., Liu G., Long X., Gao G., Wu J., Li F. // J. Catal. 2017. V. 355. P. 53. doi: 10.1016/j.jcat.2017.09.007
  7. Teschner D., Révay Z., Borsodi J., Hävecker M., Knop‐Gericke A., Schlögl R., Milroy D., Jackson S.D., Torres D., Sautet P. // Angew. Chem. 2008. V. 120. № 48. P. 9414. doi: 10.1002/ange.200802134
  8. Afineevskii A.V., Prozorov D.A., Osadchaya T.Y., Gordina N.E. // Fine Chem. Technol. 2023. V. 18. № 4. P. 341. doi: 10.32362/2410-6593-2023-18-4-341-354
  9. Патент РФ 2604093 C1, 2016.
  10. Bartholomew C.H. // Appl. Catal. A: Gen. 2001. V. 212. № 1–2. P. 17. doi: 10.1016/S0926-860X(00)00843-7
  11. Knapik A., Drelinkiewicz A., Szaleniec M., Makowski W., Waksmundzka-Góra A., Bukowska A., Bukowski W., Noworól J. // J. Mol. Catal. A: Chem. 2008. V. 279. № 1. P. 47. doi: 10.1016/j.molcata.2007.09.018
  12. Etayo P., Vidal-Ferran A. // Chem. Soc. Rev. 2013. V. 42. № 2. P. 728. doi: 10.1039/C2CS35410A
  13. Boudjahem A.G., Monteverdi S., Mercy M., Ghanbaja D., Bettahar M.M. // Catal. Lett. 2002. V. 84. P. 115. doi: 10.1023/A:1021093005287
  14. Vogt C., Weckhuysen B.M. / /Nature Rev. Chem. 2022. V. 6. № 2. P. 89. doi: 10.1038/s41570-021-00340-y
  15. Samokhvalov A., Tatarchuk B.J. // Catal. Rev. 2010. V. 52. № 3. P. 381. doi: 10.1080/01614940.2010.498749
  16. Nørskov J.K., Bligaard T., Hvolbæk B., Abild-Pedersen F., Chorkendorff I., Christensen C.H. // Chem. Soc. Rev. 2008. V. 37. № 10. P. 2163. doi: 10.1039/b800260f
  17. Сухачев Я.П., Прозоров Д.А., Афинеевский А.В., Челышева М.Д., Никитин К.А., Жилин М.А. // Вестник Тверского государственного университета. Серия: Химия. 2018. № 3. С. 89.
  18. Меркин А.А., Романенко Ю.Е., Лефедова О.В. // Известия высших учебных заведений. Химия и химическая технология. 2014. Т. 57. № 8. С. 93. doi: 10.7868/S0044453714080263

补充文件

附件文件
动作
1. JATS XML