Quantum-chemical study of alkyl- and alkenyladamantanes formation by ionic alkylation with olefins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In B3LYP-D3(BJ)/6-311++G** approximation thermodynamic parameters of formation reactions (total energy at 0 К, enthalpy and the Gibbs free energy at temperature 298.15 К and pressure 101325 Pa) are assessed for the products of ionic alkylation of adamantane and lower alkyladamantanes with ethylene and propylene. Aluminium chloride was used as acid catalyst model. Quantum-chemical calculations demonstrate the influence of methyl groups in adamantanes and olefin molecular weight on energetics of formation of relevant alkyl- and alkenyladamantanes.

Full Text

Restricted Access

About the authors

N. I. Baranov

Peoples’ Friendship University of Russia

Author for correspondence.
Email: 1042182094@rudn.ru
Russian Federation, Miklukho-Maklaya str., 6, Moscow, 117198

E. I. Bagrii

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: 1042182094@rudn.ru
Russian Federation, Leninsky Avenue, 29, Moscow, 119991

R. E. Safir

Peoples’ Friendship University of Russia

Email: 1042182094@rudn.ru
Russian Federation, Miklukho-Maklaya str., 6, Moscow, 117198

A. G. Cherednichenko

Peoples’ Friendship University of Russia

Email: 1042182094@rudn.ru
Russian Federation, Miklukho-Maklaya str., 6, Moscow, 117198

K. V. Bozhenko

Peoples’ Friendship University of Russia

Email: 1042182094@rudn.ru
Russian Federation, Miklukho-Maklaya str., 6, Moscow, 117198

A. L. Maximov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: 1042182094@rudn.ru
Russian Federation, Leninsky Avenue, 29, Moscow, 119991

References

  1. Ishizone T., Goseki R. // Polym. J. 2018.V. 50. № 9. P. 805. https://doi.org/10.1038/s41428-018-0081-3
  2. Harvey B.G., Harrison K.W., Davis M.C., Chafin A.P., Baca, J., Merriman W.W. // Energy Fuels. 2016. V. 30. № 12. P. 10171. https://doi.org/10.1021/acs.energyfuels.6b01865
  3. Muthyala R.S., Sheng S., Carlson K.E., Katzenellenbogen B.S., Katzenellenbogen J.A. // J. Med. Chem. 2003. V. 46. № 9. P. 1589. https://doi.org/10.1021/jm0204800
  4. Min J., Guillen V.S., Sharma A., Zhao Y., Ziegler Y., Gong P., Mayne C.G., Srinivasan S., Kim S.H., Carlson K.E., Nettles K.W., Katzenellenbogen B.S., Katzenellenbogen J.A. // J. Med. Chem. 2017. V. 60. № 14. P. 6321. https://doi.org/10.1021/acs.jmedchem.7b00585
  5. Robello D.R. // J. Appl. Polym. Sci. 2012. V. 127. № 1. P. 96. https://doi.org/10.1002/app.37802
  6. Yang M., Zeng Z., Lam J.W.Y., Fan J., Pu K., Tang B.Z. // Chem. Soc. Rev. 2022. V. 51. № 21. P. 8815. https://doi.org/10.1039/d2cs00228k
  7. Li X., Yin C., Liew S.S., Lee C.-S., Pu K. // Adv. Funct. Mater. 2021. V. 31. № 46. P. 2106154. https://doi.org/10.1002/adfm.202106154
  8. Zhang Y., Yan C., Wang C., Guo Z., Liu X., Zhu W.-H. // Angew. Chem. Int. Edit. 2020. V. 59. № 23. P. 9059. https://doi.org/10.1002/anie.202000165
  9. Li J., Hu Y., Li Z., Liu W., Deng T., Li J. // Anal. Chem. 2021. V. 93. № 30. P. 10601. https://doi.org/10.1021/acs.analchem.1c01804
  10. Shelef O., Gutkin S., Feder D., Ben-Bassat A., Mandelboim M., Haitin Y., Ben-Tal N., Bacharach E., Shabat D. // Chem. Sci. 2022. V. 13. № 42. P. 12348. https://doi.org/10.1039/D2SC03460C
  11. Багрий Е.И. Адамантаны: получение, свойства, применение. Москва: Наука, 1989. 264 с.
  12. Thomaston J.L., Samways M.L., Konstantinidi A., Ma C., Hu Y., Macdonald H.E.B., Wang J., Essex J.W., DeGrado W.F., Kolocouris A. // Biochemistry. 2021. V. 60. № 32. P. 2471. https://doi.org/10.1021/acs.biochem.1c00437
  13. Vu B.D., Ba N.M.H., Pham V.H., Phan D.C. // ACS Omega. 2020. V. 5. № 26. P. 16085. https://doi.org/10.1021/acsomega.0c01589
  14. Bräse S., Waegell B., de Meijere A. // Synthesis. 1998. № 2. P. 148. https://doi.org/10.1055/s-1998-2013
  15. Ikeda Y., Nakamura T., Yorimitsu H., Oshima K. // J. Am. Chem. Soc. 2002. V. 124. № 23. P. 6514. https://doi.org/10.1021/ja026296l
  16. Fokin A.A., Butova E.D., Barabash A.V., Huu N.N., Tkachenko B.A., Fokina N.A., Schreiner P.R.// Synth. Commun. 2013. V. 43. № 13. P. 1772. https://doi.org/10.1080/00397911.2012.667491
  17. Савельева С.А., Леонова М.В., Баймуратов М.Р., Климочкин Ю.Н. // Журнал органической химии. 2018. Т. 54. № 7. С. 994. (Savel’eva S.A., Leonova M.V., Baimuratov M.R., and Klimochkin Y.N. // Russ. J. Org. Chem. 2018. V. 54. № 7. P. 996.) https://doi.org/10.1134/S1070428018070047
  18. Amaoka Y., Nagatomo M., Watanabe M., Tao K., Kamijo S., Inoue, M. // Chem. Sci. 2014. V.5. № 11. P. 4339. https://doi.org/10.1039/C4SC01631A
  19. Cao H., Kuang Y., Shi X., Wong K.L., Tan B.B., Kwan J.M.C., Liu X., Wu J. // Nat. Commun. 2020. V. 11. Article № 1956. https://doi.org/10.1038/s41467-020-15878-6
  20. Santiago A.N., Basso S.M., Toledo C.A., Rossi R.A. // New J. Chem. 2005. V. 29. № 7. P. 875. https://doi.org/10.1039/B418305C
  21. Zhao J.-F., Wang H., Wang H.-B., Tian Q.-Q., Zhang Y.-Q., Feng H.-T., He W. // Org. Chem. Front. 2023. V. 10. № 2. P. 348. https://doi.org/10.1039/D2QO01614A
  22. Baimuratov M.R., Leonova M.V., Shiryaev V.A., Klimochkin Y.N. // Tetrahedron Lett. 2016. V. 57. № 48. P. 5317. https://doi.org/10.1016/j.tetlet.2016.10.059
  23. Islam S.M., Poirier R.A. // J. Phys. Chem. A. 2008. V. 112. № 1. P. 152. https://doi.org/10.1021/jp077306d
  24. Sen A., Mehta G., Ganguly B. // Tetrahedron. 2011. V. 67. № 20. P. 3754. https://doi.org/10.1016/j.tet.2011.02.022
  25. Kozuch S., Zhang X., Hrovat D.A., Hrovat D.A., Borden W.T. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17274. https://doi.org/10.1021/ja409176u
  26. Багрий Е.И., Борисов Ю.А., Колбановский Ю.А., Максимов А.Л. // Нефтехимия. 2019. Т. 59. № 1. C. 64. https://doi.org/10.1134/S0028242119010064 (Bagrii, E.I., Borisov, Y.A., Kolbanovskii, Y.A., and Maksimov, A.L. // Pet. Chem. 2019. V. 59. P. 66.) https://doi.org/10.1134/S0965544119010067)
  27. Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S. et all. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
  28. Candian A., Bouwman J., Hemberger P., Bodi A., Tielens A.G.G.M. // Phys. Chem. Chem. Phys. 2018. V. 20. № 8. P. 5399. https://doi.org/10.1039/C7CP05957D
  29. Wu J.I., van Eikema Hommes N.J.R., Lenoir D., Bachrach S.M. // J. Phys. Org. Chem. 2019. V. 32. № 9. P. e3965. https://doi.org/10.1002/poc.3965
  30. Bachrach S.M. // J. Phys. Org. Chem. 2018. V. 31. № 7. P. e3840. https://doi.org/10.1002/poc.3840
  31. Zhuk T.S., Koso T., Pashenko A.E., Hoc N.T., Rodionov V.N., Serafin M., Schreiner P.R., Fokin A.A. // J. Am. Chem. Soc. 2015. V. 137. № 20. P. 6577. https://doi.org/10.1021/jacs.5b01555
  32. Chemcraft – графическая программа для визуализации квантово-химических расчетов. https://www.chemcraftprog.com (дата обращения: 07.09.2023).
  33. Olah G.A., Prakash G.K.S., Shih J.G., Krishnamurthy V.V., Mateescu G.D., Liang G., Sipos G., Buss V., Gund T.M., Schleyer P.v.R. // J. Am. Chem. Soc. 1985. V. 107. № 9. P. 2764. https://doi.org/10.1021/ja00295a032
  34. Баранов Н.И., Сафир Р.Е., Багрий Е.И., Боженко К.В., Чередниченко А.Г. // Нефтехимия. 2020. T. 60. № 5. C. 644. https://doi.org/10.31857/S0028242120050044 (Baranov N.I., Safir R.E., Bagrii E.I., Bozhenko K.V., and Cherednichenko A.G. // Petrol. Chemistry. 2020. V. 60. № 9. P. 1033.) https://doi.org/10.1134/S0965544120090042

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometric structure of Ad – CH2 – CH+ – CH3.

Download (239KB)
3. Fig. 2. PS of the reaction Ad+ + C3H6 → Ad – CH2 – C+H – CH3 (imaginary frequency of PS 234.59i).

Download (241KB)