Evolutionary aspects of the neurophysiological role of tyramine and octopamine

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Currently, such biologically active substances of endogenous nature as tyramine and octopamine are classified as trace amines, which is associated with their relatively low concentration in tissues. However, this is true to a greater extent with respect to higher vertebrates, in which these amines play a wide range of physiological functions, including modulatory effects in the nervous system by activating their own receptors for trace amines. In invertebrates, the level of these amines is higher, and they act in the nervous system not so much as modulators, but as neurotransmitters activating receptors of a different nature. This review analyzes experimental data on the neurophysiological role of tyramine and octopamine in the body of invertebrates and vertebrates, demonstrating similarities and differences in both the functions and the receptors mediating these functions. A certain emphasis is placed on data indicating a close relationship between signaling mediated by trace amines and the sympathetic division of the nervous system in higher vertebrates. Based on this, the idea is formed that in the process of evolution the noradrenergic signaling system could take over the role of tyramine and octopamine signaling. However, this idea is still debated, and the signaling role of tyramine and octopamine in the nervous system of higher vertebrates remains significant and continues to be actively studied. Interest in this is due to the fact that it is in vertebrates that the amines in question “acquired” both a new spectrum of physiological functions and a new set of receptor proteins for their implementation in the process of evolution. These proteins, as it turned out, can act as potential targets for the treatment of a number of neuropsychiatric disorders.

Авторлар туралы

A. Malomouzh

Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”; Kazan National Research Technical University

Kazan, Russia; Kazan, Russia

E. Nevsky

Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”; Kazan (Volga Region) Federal University

Email: nevskywissen@gmail.com
Kazan, Russia; Kazan, Russia

Әдебиет тізімі

  1. Branchek T, Blackburn T(2003) Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 3:90–97. https://doi.org/10.1016/S1471-4892(02)00028-0
  2. Berry MD(2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271. https://doi.org/10.1111/j.1471-4159.2004.02501.x
  3. Gainetdinov RR, Hoener MC, Berry MD(2018) Trace Amines and Their Receptors. Pharmacol Rev 70:549–620. https://doi.org/10.1124/pr.117.015305
  4. Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA(2024) Trace Amine-Associated Receptors’ Role in Immune System Functions. Biomedicines 12:893. https://doi.org/10.3390/biomedicines12040893
  5. Pretorius L, Coetzee JA, Santos AP dos, Smith C(2025) Modulating autism spectrum disorder pathophysiology using a trace amine-focused approach: targeting the gut. Molecular Medicine 31:198. https://doi.org/10.1186/s10020-025-01232-3
  6. Galstyan DS, Krotova NA, Lebedev AS, Kotova MM, Martynov DD, Golushko NI, Perederiy AS, Zhukov IS, Rosemberg DB, Lim LW, Yang L, de Abreu MS, Gainetdinov RR, Kalueff AV(2025) Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance. Eur J Pharmacol 991:177312. https://doi.org/10.1016/j.ejphar.2025.177312
  7. Evans PD, Maqueira B(2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebrate Neuroscience 5:111–118. https://doi.org/10.1007/s10158-005-0001-z
  8. Cazzamali G, Klaerke DA, Grimmelikhuijzen CJP(2005) A new family of insect tyramine receptors. Biochem Biophys Res Commun 338:1189–1196. https://doi.org/10.1016/j.bbrc.2005.10.058
  9. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C(2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proceedings of the National Academy of Sciences 98: 8966–8971. https://doi.org/10.1073/pnas.151105198
  10. Neckameyer WS, Leal SM(2017) Diverse Functions of Insect Biogenic Amines as Neurotransmitters, Neuromodulators, and Neurohormones. In: Hormones, Brain and Behavior. Elsevier, pp 367–401.
  11. Roeder T(2016) Trace Amines. In: Trace Amines and Neurological Disorders. Elsevier, pp 3–9.
  12. Roeder T(2005) TYRAMINE AND OCTOPAMINE: Ruling Behavior and Metabolism. Ann Rev Entomol 50:447–477. https://doi.org/10.1146/annurev.ento.50.071803.130404
  13. Bauknecht P, Jékely G(2017) Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 15:6. https://doi.org/10.1186/s12915-016-0341-7
  14. Roeder T(2020) The control of metabolic traits by octopamine and tyramine in invertebrates. J Exp Biol 223(Pt 7):jeb194282. https://doi.org/10.1242/jeb.194282
  15. Roeder T, Seifert M, Kähler C, Gewecke M(2003) Tyramine and octopamine: Antagonistic modulators of behavior and metabolism. Arch Insect Biochem Physiol 54:1–13. https://doi.org/10.1002/arch.10102
  16. Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR(2005) Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System. Neuron 46:247–260. https://doi.org/10.1016/j.neuron.2005.02.024
  17. Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ(2009) A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response. Neuron 62:526–538. https://doi.org/10.1016/j.neuron.2009.04.013
  18. Downer RGH, Hiripi L, Juhos S(1993) Characterization of the tyraminergic system in the central nervous systemof the locust,Locusta migratoria migratoides. Neurochem Res 18:1245–1248. https://doi.org/10.1007/BF00975042
  19. Nagaya Y, Kutsukake M, Chigusa SI, Komatsu A(2002) A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci Lett 329:324–328. https://doi.org/10.1016/S0304-3940(02)00596-7
  20. Kononenko NL, Wolfenberg H, Pflüger H(2009) Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: An immunocytochemical study. J Comp Neurol 512:433–452. https://doi.org/10.1002/cne.21911
  21. Morton DB, Evans PD(1984) Octopamine Release From an Identified Neurone in the Locust. Journal of Experimental Biology 113:269–287. https://doi.org/10.1242/jeb.113.1.269
  22. Orchard I, Lange AB(1987) The release of octopamine and proctolin from an insect visceral muscle: effects of high-potassium saline and neural stimulation. Brain Res 413:251–258. https://doi.org/10.1016/0006-8993(87)91015-8
  23. Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger H-J, Blenau W, Broeck J Vanden(2010) The role of octopamine in locusts and other arthropods. J Insect Physiol 56:854–867. https://doi.org/10.1016/j.jinsphys.2010.05.018
  24. Consoulas C, Johnston RM, Pflüger HJ, Levine RB(1999) Peripheral distribution of presynaptic sites of abdominal motor and modulatory neurons in Manduca sexta larvae. J Comp Neurol 410:4–19. https://doi.org/10.1002/(sici)1096-9861(19990719)410:1<4::aid-cne2>3.0.co;2-w
  25. Roeder T, Gewecke M(1989) Octopamine uptake systems in thoracic ganglia and leg muscles of Locusta migratoria. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 94:143–147. https://doi.org/10.1016/0742-8413(89)90158-8
  26. McClung C, Hirsh J(1998) Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Current Biology 8:109–112. https://doi.org/10.1016/S0960-9822(98)70041-7
  27. Gallant P, Malutan T, McLean H, Verellen L, Caveney S, Donly C(2003) Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth*. Eur J Biochem 270:664–674. https://doi.org/10.1046/j.1432-1033.2003.03417.x
  28. Donly BC, Caveney S(2005) A transporter for phenolamine uptake in the arthropod CNS. Arch Insect Biochem Physiol 59:172–183. https://doi.org/10.1002/arch.20063
  29. Dewhurst SA, Croker SG, Ikeda K, McCaman RE(1972) Metabolism of biogenetic amines in drosophila nervous tissue. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 43:975–981. https://doi.org/10.1016/0305-0491(72)90241-6
  30. Bayliss A, Roselli G, Evans PD(2013) A comparison of the signalling properties of two tyramine receptors from Drosophila. J Neurochem 125:37–48. https://doi.org/10.1111/jnc.12158
  31. Qi Y, Xu G, Gu G, Mao F, Ye G, Liu W, Huang J(2017) A new Drosophila octopamine receptor responds to serotonin. Insect Biochem Mol Biol 90:61–70. https://doi.org/10.1016/j.ibmb.2017.09.010
  32. Wu S, Xu G, Qi Y, Xia R, Huang J, Ye G(2014) Two splicing variants of a novel family of octopamine receptors with different signaling properties. J Neurochem 129:37–47. https://doi.org/10.1111/jnc.12526
  33. El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T(2015) Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res 361:669–684. https://doi.org/10.1007/s00441-015-2137-4
  34. Finetti L, Roeder T, Calò G, Bernacchia G(2021) The Insect Type 1 Tyramine Receptors: From Structure to Behavior. Insects 12:315. https://doi.org/10.3390/insects12040315
  35. Blenau W, Balfanz S, Baumann A(2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74:900–908. https://doi.org/10.1046/j.1471-4159.2000.0740900.x
  36. Broeck J Vanden, Vulsteke V, Huybrechts R, De Loof A(1995) Characterization of a Cloned Locust Tyramine Receptor cDNA by Functional Expression in Permanently Transformed Drosophila S2 Cells. J Neurochem 64:2387–2395. https://doi.org/10.1046/j.1471-4159.1995.64062387.x
  37. Enan EE(2005) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem Mol Biol 35:309–321. https://doi.org/10.1016/j.ibmb.2004.12.007
  38. Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD(1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13:1325–1330. https://doi.org/10.1002/j.1460-2075.1994.tb06385.x
  39. Poels J, Suner M -M., Needham M, Torfs H, De Rijck J, De Loof A, Dunbar SJ, Vanden Broeck J(2001) Functional expression of a locust tyramine receptor in murine erythroleukaemia cells. Insect Mol Biol 10:541–548. https://doi.org/10.1046/j.0962-1075.2001.00292.x
  40. Ohta H, Ozoe Y(2014) Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptors as Potential Insect Pest Control Targets. pp 73–166.
  41. Reim T, Balfanz S, Baumann A, Blenau W, Thamm M, Scheiner R(2017) AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. Insect Biochem Mol Biol 80:91–100. https://doi.org/10.1016/j.ibmb.2016.12.004
  42. Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y(2009) Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol 39:842–849. https://doi.org/10.1016/j.ibmb.2009.10.001
  43. Kutsukake M, Komatsu A, Yamamoto D, Ishiwa-Chigusa S (2000) A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245:31–42. https://doi.org/10.1016/S0378-1119(99)00569-7
  44. Zhukovskaya MI, Polyanovsky AD(2017) Biogenic Amines in Insect Antennae. Front Syst Neurosci 11:45. https://doi.org/10.3389/fnsys.2017.00045
  45. Moro CA, Sony SA, Franklin LP, Dong S, Peifer MM, Wittig KE, Hanna-Rose W(2023) Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans. PLoS Genet 19:e1010974. https://doi.org/10.1371/journal.pgen.1010974
  46. Fussnecker BL, Smith BH, Mustard JA(2006) Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J Insect Physiol 52:1083–1092. https://doi.org/10.1016/j.jinsphys.2006.07.008
  47. Brembs B, Christiansen F, Pflüger HJ, Duch C(2007) Flight Initiation and Maintenance Deficits in Flies with Genetically Altered Biogenic Amine Levels. J Neurosci 27:11122–11131. https://doi.org/10.1523/JNEUROSCI.2704-07.2007
  48. Saraswati S, Fox LE, Soll DR, Wu C(2004) Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J Neurobiol 58:425–441. https://doi.org/10.1002/neu.10298
  49. Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C(2021) A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Current Biology 31:4231–4245.e4. https://doi.org/10.1016/j.cub.2021.07.029
  50. Balfanz S, Strünker T, Frings S, Baumann A(2005) A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+release in Drosophila melanogaster. J Neurochem 93:440–451. https://doi.org/10.1111/j.1471-4159.2005.03034.x
  51. Lee H-G, Seong C-S, Kim Y-C, Davis RL, Han K-A(2003) Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. Dev Biol 264:179–190. https://doi.org/10.1016/j.ydbio.2003.07.018
  52. Kim Y-C, Lee H-G, Lim J, Han K-A(2013) Appetitive Learning Requires the Alpha1-Like Octopamine Receptor OAMB in the DrosophilaMushroom Body Neurons. The Journal of Neuroscience 33:1672–1677. https://doi.org/10.1523/JNEUROSCI.3042-12.2013
  53. Han K-A, Millar NS, Davis RL(1998) A Novel Octopamine Receptor with Preferential Expression in Drosophila Mushroom Bodies. The Journal of Neuroscience 18:3650–3658. https://doi.org/10.1523/JNEUROSCI.18-10-03650.1998
  54. Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A(2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86:725–735. https://doi.org/10.1046/j.1471-4159.2003.01876.x
  55. Blenau W, Wilms JA, Balfanz S, Baumann A(2020) AmOctα2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. Int J Mol Sci 21:9334. https://doi.org/10.3390/ijms21249334
  56. Beggs KT, Tyndall JDA, Mercer AR(2011) Honey Bee Dopamine and Octopamine Receptors Linked to Intracellular Calcium Signaling Have a Close Phylogenetic and Pharmacological Relationship. PLoS One 6:e26809. https://doi.org/10.1371/journal.pone.0026809
  57. Ohtani A, Arai Y, Ozoe F, Ohta H, Narusuye K, Huang J, Enomoto K, Kataoka H, Hirota A, Ozoe Y(2006) Molecular cloning and heterologous expression of an α-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Mol Biol 15:763–772. https://doi.org/10.1111/j.1365-2583.2006.00676.x
  58. Huang J, Hamasaki T, Ozoe Y(2010) Pharmacological characterization of a Bombyx mori α-adrenergic-like octopamine receptor stably expressed in a mammalian cell line. Arch Insect Biochem Physiol 73:74–86. https://doi.org/10.1002/arch.20341
  59. Huang J, Wu S-F, Li X-H, Adamo SA, Ye G-Y(2012) The characterization of a concentration-sensitive α-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Brain Behav Immun 26:942–950. https://doi.org/10.1016/j.bbi.2012.04.007
  60. Nakagawa H, Maehara S, Kume K, Ohta H, Tomita J(2022) Biological functions of α2-adrenergic-like octopamine receptor in Drosophila melanogaster. Genes Brain Behav 21(6):e12807. https://doi.org/10.1111/gbb.12807
  61. Zheng L-S, Liu X-Q, Liu G-G, Huang Q-Q, Wang J-J, Jiang H-B(2021) Knockdown of aβ-Adrenergic-Like Octopamine Receptor Affects Locomotion and Reproduction of Tribolium castaneum. Int J Mol Sci 22:7252. https://doi.org/10.3390/ijms22147252
  62. Maqueira B, Chatwin H, Evans PD(2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560. https://doi.org/10.1111/j.1471-4159.2005.03251.x
  63. Wu S-F, Yao Y, Huang J, Ye G-Y(2012) Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis). Journal of Experimental Biology 215:2646–2652. https://doi.org/10.1242/jeb.068932
  64. Balfanz S, Jordan N, Langenstück T, Breuer J, Bergmeier V, Baumann A(2014) Molecular, pharmacological,and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J Neurochem 129:284–296. https://doi.org/10.1111/jnc.12619
  65. Chen X, Ohta H, Ozoe F, Miyazawa K, Huang J, Ozoe Y (2010) Functional and pharmacological characterization of a β-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Biochem Mol Biol 40:476–486. https://doi.org/10.1016/j.ibmb.2010.04.007
  66. Tao J, Ma Y-C, Yang Z-S, Zou C-G, Zhang K-Q(2016) Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. Sci Adv 2(5):e1501372. https://doi.org/10.1126/sciadv.1501372
  67. Sayin S, De Backer J-F, Siju KP, Wosniack ME, Lewis LP, Frisch L-M, Gansen B, Schlegel P, Edmondson-Stait A, Sharifi N, Fisher CB, Calle-Schuler SA, Lauritzen JS, Bock DD, Costa M, Jefferis GSXE, Gjorgjieva J, Grunwald Kadow IC(2019) A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila. Neuron 104:544–558.e6. https://doi.org/10.1016/j.neuron.2019.07.028
  68. Youn H, Kirkhart C, Chia J, Scott K(2018) A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster. PLoS One 13:e0198362. https://doi.org/10.1371/journal.pone.0198362
  69. Kaya-Zeeb S, Engelmayer L, Straßburger M, Bayer J, Bähre H, Seifert R, Scherf-Clavel O, Thamm M(2022)Octopamine drives honeybee thermogenesis. Elife 11:e74334. https://doi.org/10.7554/eLife.74334
  70. Koon AC, Ashley J, Barria R, DasGupta S, Brain R, Waddell S, Alkema MJ, Budnik V(2011) Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci 14:190–199. https://doi.org/10.1038/nn.2716
  71. Bakshinska D, Liu WY, Schultz R, Stowers RS, Hoagland A, Cypranowska C, Stanley C, Younger SH, Newman ZL, Isacoff EY(2025) Synapse-specific catecholaminergic modulation of neuronal glutamate release. Proc Nat Acad Sci 122(1):e2420496121. https://doi.org/10.1073/pnas.2420496121
  72. Juorio AV, Greenshaw AJ, Wishart TB(1988) Reciprocal changes in striatal dopamine and p-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn Schmiedebergs Arch Pharmacol 338:644–648. https://doi.org/10.1007/BF00165628
  73. Henry DP, Russell WL, Clemens JA, Plebus LA(1988) Phenylethlamine and P-Tyramine in the Extracellular Space of the Rat Brain: Quantification Using a New Radioenzymatic Assay and in Situ Microdialysis. In: Trace Amines. Humana Press, Totowa, NJ, pp 239–250.
  74. Berry MD, Shitut MR, Almousa A, Alcorn J, Tomberli B (2013) Membrane permeability of trace amines: Evidence for a regulated, activity-dependent, nonexocytotic, synaptic release. Synapse 67:656–667. https://doi.org/10.1002/syn.21670
  75. Tchercansky DM, Acevedo C, Rubio MC(1994) Studies of Tyramine Transfer and Metabolism Using an In Vitro Intestinal Preparation. J Pharm Sci 83:549–552. https://doi.org/10.1002/jps.2600830421
  76. Holland BW, Berry MD, Gray CG, Tomberli B(2015) A Permeability Study of O2and the Trace Amine p-Tyramine through Model Phosphatidylcholine Bilayers. PLoS One 10:e0122468. https://doi.org/10.1371/journal.pone.0122468
  77. Malomouzh AI, Nikolsky EE(2018) Modern Concepts ofCholinergic Neurotransmission at the Motor Synapse. Biochem (Mosc) Suppl Ser A Membr Cell Biol 12:209–222. https://doi.org/10.1134/S1990747818030078
  78. Nassenstein C, Wiegand S, Lips KS, Li G, Klein J, Kummer W(2015) Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters. Int Immunopharmacol 29:173–180. https://doi.org/10.1016/j.intimp.2015.08.007
  79. Attwell D, Barbour B, Szatkowski M(1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407. https://doi.org/10.1016/0896-6273(93)90145-H
  80. Schömig E, Lazar A, Gründemann D(2006) Extraneuronal Monoamine Transporter and Organic Cation Transporters 1 and 2: A Review of Transport Efficiency. In: Neurotransmitter Transporters. Springer-Verlag, Berlin/Heidelberg, pp 151–180.
  81. Berry MD, Hart S, Pryor AR, Hunter S, Gardiner D(2016) Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes. Sci Rep 6:38006. https://doi.org/10.1038/srep38006
  82. Engel K, Wang J(2005) Interaction of Organic Cations with a Newly Identified Plasma Membrane Monoamine Transporter. Mol Pharmacol 68:1397–1407. https://doi.org/10.1124/mol.105.016832
  83. Hauptmann N, Grimsby J, Shih JC, Cadenas E(1996) The Metabolism of Tyramine by Monoamine Oxidase A/B Causes Oxidative Damage to Mitochondrial DNA. Arch Biochem Biophys 335:295–304. https://doi.org/10.1006/abbi.1996.0510
  84. Rafehi M, Faltraco F, Matthaei J, Prukop T, Jensen O, Grytzmann A, Blome FG, Berger RG, Krings U, Vormfelde SV, Tzvetkov MV, Brockmöller J(2019) Highly Variable Pharmacokinetics of Tyramine in Humans and Polymorphisms in OCT1, CYP2D6, and MAO-A. Front Pharmacol 10:1297. https://doi.org/10.3389/fphar.2019.01297
  85. Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson Y-W, Zhang Z, Wilkerson C, Li W(2009) The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 9:180. https://doi.org/10.1186/1471-2148-9-180
  86. Eyun S, Moriyama H, Hoffmann FG, Moriyama EN(2016) Molecular Evolution and Functional Divergence of Trace Amine–Associated Receptors. PLoS One 11:e0151023. https://doi.org/10.1371/journal.pone.0151023
  87. Hashiguchi Y, Nishida M(2007) Evolution of Trace Amine–Associated Receptor (TAAR) Gene Family in Vertebrates: Lineage-Specific Expansions and Degradations of a Second Class of Vertebrate Chemosensory Receptors Expressed in the Olfactory Epithelium. Mol Biol Evol 24:2099–2107. https://doi.org/10.1093/molbev/msm140
  88. Gloriam DEI, Bjarnadóttir TK, Schiöth HB, Fredriksson R(2005) High Species Variation within the Repertoire of Trace Amine Receptors. Ann N Y Acad Sci 1040:323–327. https://doi.org/10.1196/annals.1327.052
  89. Azzouzi N, Barloy-Hubler F, Galibert F(2015) Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 16:335. https://doi.org/10.1186/s12864-015-1478-4
  90. Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z(2017) Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus.Biochimica et Biophysica Acta (BBA) — General Subjects 1861: 644–651. https://doi.org/10.1016/j.bbagen.2016.10.017
  91. Ferrero DM, Wacker D, Roque MA, Baldwin MW, Stevens RC, Liberles SD(2012) Agonists for 13 Trace Amine-Associated Receptors Provide Insight into the Molecular Basis of Odor Selectivity. ACS Chem Biol 7:1184–1189. https://doi.org/10.1021/cb300111e
  92. Hussain A, Saraiva LR, Korsching SI(2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proceedings of the National Academy of Sciences 106:4313–4318. https://doi.org/10.1073/pnas.0803229106
  93. Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME(2016) In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1. J Pharmacol Exp Ther 357:134–144. https://doi.org/10.1124/jpet.115.229765
  94. Lindemann L, Hoener MC(2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26:274–281. https://doi.org/10.1016/j.tips.2005.03.007
  95. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK(2001) Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol Pharmacol 60:1181–1188. https://doi.org/10.1124/mol.60.6.1181
  96. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B(2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Nat Acad Sci 106:20081–20086. https://doi.org/10.1073/pnas.0906522106
  97. Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC(2015) Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Europ Neuropsychopharmacol 25:2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011
  98. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG(2004) Desensitization of g protein–coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144. https://doi.org/10.1146/annurev.neuro.27.070203.144206
  99. Liu J-F, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li J-X(2018) Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology 43:2435–2444. https://doi.org/10.1038/s41386-018-0017-9
  100. Ferragud A, Howell AD, Moore CF, Ta TL, Hoener MC, Sabino V, Cottone P(2017) The Trace Amine-Associated Receptor 1 Agonist RO5256390 Blocks Compulsive, Binge-like Eating in Rats. Neuropsychopharmacology 42:1458–1470. https://doi.org/10.1038/npp.2016.233
  101. Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR(2015)TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology 40:2217–2227. https://doi.org/10.1038/npp.2015.65
  102. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau J-L, Hoener MC(2008) Trace Amine-Associated Receptor 1 Modulates Dopaminergic Activity. J Pharmacol Exp Ther 324:948–956. https://doi.org/10.1124/jpet.107.132647
  103. Gozal EA, O’Neill BE, Sawchuk MA, Zhu H, Halder M, Chou C-C, Hochman S(2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits 8:134. https://doi.org/10.3389/fncir.2014.00134
  104. Rutigliano G, Accorroni A, Zucchi R(2018) The Case for TAAR1 as a Modulator of Central Nervous System Function. Front Pharmacol 8:987. https://doi.org/10.3389/fphar.2017.00987
  105. Federici M, Geracitano R, Tozzi A, Longone P, Di Angelantonio S, Bengtson CP, Bernardi G, Mercuri NB(2005) Trace Amines Depress GABAB Response in Dopaminergic Neurons by Inhibiting G-βγ-Gated Inwardly Rectifying Potassium Channels. Mol Pharmacol 67:1283–1290. https://doi.org/10.1124/mol.104.007427
  106. Zhu Z-T, Munhall AC, Johnson SW(2007) Tyramine excites rat subthalamic neurons in vitro by a dopamine-dependent mechanism. Neuropharmacology 52:1169–1178. https://doi.org/10.1016/j.neuropharm.2006.12.005
  107. Mantas I, Vallianatou T, Yang Y, Shariatgorji M, Kalomoiri M, Fridjonsdottir E, Millan MJ, Zhang X, Andrén PE, Svenningsson P(2021) TAAR1-Dependent and -Independent Actions of Tyramine in Interaction With Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition. Biol Psychiatry 90:16–27. https://doi.org/10.1016/j.biopsych.2020.12.008
  108. Zhang Y, Wang H, Sun Y, Huang Z, Tao Y, Wang Y, Jiang X, Tao J(2023) Trace amine-associated receptor 1 regulation of Kv1.4 channels in trigeminal ganglion neurons contributes to nociceptive behaviors. J Headache Pain 24:49. https://doi.org/10.1186/s10194-023-01582-5
  109. Svitko S, Shaidullova K, Nevsky E, Ananev A, Sitdikova G(2025) Comparison of Dopamine and Tyramine Action on the Firing Rate of Trigeminal Dural Afferents in Wild Type and DAT-HET Rats. Biochem (Mosc) Suppl Ser A Membr Cell Biol 19:106–114. https://doi.org/10.1134/S1990747824700533
  110. Hicks TP, McLennan H(1978) Comparison of the actions of octopamine and catecholamines on single neurones of the rat cerebral cortex. Br J Pharmacol 64:485–491. https://doi.org/10.1111/j.1476-5381.1978.tb17309.x
  111. Jagiełło-Wójtowicz E, Chodkowska A(1984) Effects of octopamine on GABA-ergic transmission in rats. Pol J Pharmacol Pharm 36:595–601.
  112. Chance WT, Bemardini AP, James JH, Edwards LL, Minnema K, Fischer JE(1985) Behavioral depression after intraventricular infusion of octopamine in rats. The American J Surgery 150:577–584. https://doi.org/10.1016/0002-9610(85)90441-6
  113. Quintanilha TM, Costa PM, Cardoso ALS, Battú GS, Bastos LM, dos Santos BP, Müller TE, de Oliveira TF, Piato A, Kalueff A V., de Abreu MS(2025) Acute Effects of Four Major Trace Amines on Zebrafish Behavioral, Neurochemical, and Neuroendocrine Responses. J Neurochem 169(6):e70116. https://doi.org/10.1111/jnc.70116
  114. Shum A, Zaichick S, McElroy GS, D’Alessandro K, Alasady MJ, Novakovic M, Peng W, Grebenik EA, Chung D, Flanagan ME, Smith R, Morales A, Stumpf L, McGrath K, Krainc D, Mendillo ML, Prakriya M, Chandel NS, Caraveo G(2023) Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. Proceedings of the National Academy of Sciences 120(17):e2217396120. https://doi.org/10.1073/pnas.2217396120
  115. Cheng J-T, Shen CL, Jou T-C(1990) Inhibitory effect of octopamine on dopamine D-1 receptor in striatal homogenates of the rat. Neurosci Res 9:202–207. https://doi.org/10.1016/0168-0102(90)90005-Y
  116. de Oliveira DMN, Oliveira-Silva CA, Pinheiro CG, de Carvalho EF, Gadelha KKL, Lima-Silva K, Cavalcante AKM, Belém M de O, Paula SM, dos Santos AA, Magalhães PJC(2021) Differential effects of β-methylphenylethylamine and octopamine on contractile parameters of the rat gastrointestinal tract. Eur J Pharmacol 908:174339. https://doi.org/10.1016/j.ejphar.2021.174339
  117. Revel FG, Moreau J-L, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC(2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Nat Acad Sci 108:8485–8490. https://doi.org/10.1073/pnas.1103029108
  118. Boulay D, Bergis O, Avenet P, Griebel G(2010) The Glycine Transporter-1 Inhibitor SSR103800 Displays a Selective and Specific Antipsychotic-like Profile in Normal and Transgenic Mice. Neuropsychopharmacology 35:416–427. https://doi.org/10.1038/npp.2009.144
  119. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP(2007) The Trace Amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav 6:628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x
  120. Swerdlow NR, Keith VA, Braff DL, Geyer MA(1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536.
  121. Braff DL, Geyer MA, Swerdlow NR(2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258. https://doi.org/10.1007/s002130100810
  122. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R(1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72. https://doi.org/10.1016/S0006-3223(99)00067-0
  123. Breier A, Su T-P, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D(1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc NatAcad Sci 94:2569–2574. https://doi.org/10.1073/pnas.94.6.2569
  124. Millan MJ(2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295:853–861.
  125. Fabbri E, Balbi T, Canesi L(2024) Neuroendocrine functions of monoamines in invertebrates: Focus on bivalve molluscs. Mol Cell Endocrinol 588:112215. https://doi.org/10.1016/j.mce.2024.112215
  126. Hana S, Lange AB(2017) Cloning and Functional Characterization of Octβ2-Receptor and Tyr1-Receptor in the Chagas Disease Vector, Rhodnius prolixus. Front Physiol 8:744. https://doi.org/10.3389/fphys.2017.00744
  127. Stohs SJ, Badmaev V(2016) A Review of Natural Stimulant and Non-stimulant Thermogenic Agents. Phytotherapy Research 30:732–740. https://doi.org/10.1002/ptr.5583
  128. Stohs SJ, Shara M, Ray SD(2020) p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytotherapy Research 34:1838–1846. https://doi.org/10.1002/ptr.6649
  129. Carpéné C, Galitzky J, Fontana E, Atgié C, Lafontan M, Berlan M(1999) Selective activation of β3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol 359:310–321. https://doi.org/10.1007/PL00005357
  130. Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA(2019) The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 176 (Suppl 1):S21-S141. https://doi.org/10.1111/bph.14748
  131. Ji P, Xu F, Huang B, Li Y, Li L, Zhang G(2016) Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas. PLoS One 11:e0168574. https://doi.org/10.1371/journal.pone.0168574
  132. Rosenbaum DM, Rasmussen SGF, Kobilka BK(2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363. https://doi.org/10.1038/nature08144
  133. Sinakevitch IT, Daskalova SM, Smith BH(2017) The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain. Front Syst Neurosci 11. https://doi.org/10.3389/fnsys.2017.00077
  134. Zhu H, Liu Z, Ma H, Zheng W, Liu J, Zhou Y, Man Y, Zhou X, Zeng A(2022) Pharmacological Properties and Function of the PxOctβ3 Octopamine Receptor in Plutella xylostella (L.). Insects 13:735. https://doi.org/10.3390/insects13080735
  135. Molinoff P, Axelrod J(1969) Octopamine: Normal Occurrence in Sympathetic Nerves of Rats. Science (1979) 164:428–429. https://doi.org/10.1126/science.164.3878.428
  136. Jones RSG(1982) Noradrenaline-octopamine interactions on cortical neurones in the rat. Eur J Pharmacol 77:159–162. https://doi.org/10.1016/0014-2999(82)90012-7
  137. Berg T, Jensen J(2013) Tyramine Reveals Failing α2-Adrenoceptor Control of Catecholamine Release and Total Peripheral Vascular Resistance in Hypertensive Rats. Front Neurol 4:19. https://doi.org/10.3389/fneur.2013.00019
  138. Watts SW, Burnett R, Ayala-Lopez N, Mahon B, Dorrance AM, Jackson WF, Fink GD(2013) Tyramine Reveals a Functional Adrenergic System in Perivascular Adipose Tissue. Hypertension 62: 19. https://doi.org/10.1161/hyp.62.suppl_1.A407
  139. Pei Y, Asif-Malik A, Canales JJ(2016) Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front Neurosci 10:10:148. https://doi.org/10.3389/fnins.2016.00148
  140. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS(2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41. https://doi.org/10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3
  141. Adams F, Boschmann M, Schaller K, Franke G, Gorzelniak K, Janke J, Klaus S, Luft FC, Heer M, Jordan J(2006) Tyramine in the assessment of regional adrenergic function. Biochem Pharmacol 72:1724–1729. https://doi.org/10.1016/j.bcp.2006.09.004
  142. Guan W(2025) The role of trace amine-associated receptor 1 (TAAR1) in the pathophysiology and treatment of depression. Curr Neuropharmacol 23. https://doi.org/10.2174/011570159X370669250526115723
  143. Shemiakova TS, Markina AA, Efimova EV, Murtazina RZ, Volnova AB, Veshchitskii AA, Leonova EI, Gainetdinov RR(2025) TAAR8 in the Brain: Implications for Dopaminergic Function, Neurogenesis, and Behavior. Biomedicines 13:1391. https://doi.org/10.3390/biomedicines13061391
  144. Li Z, Wan L, Dong J, Li J, Liu J(2025) Trace amine-associated receptors as potential targets for the treatment of anxiety and depression.Front Pharmacol 16: 1598048. https://doi.org/10.3389/fphar.2025.1598048

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025