Peculiarities of the mid-lithospheric discontinuity in the East-European craton collision zone

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The receiver function method was used to construct kinematic models of the collision zone of the central part of the East European craton based on data from five broadband seismic stations. A layer of lower velocities with upper boundary at a depth of about 90 km was identified in the upper mantle of the Sarmatia protocraton, marking a mid-lithospheric discontinuity (MLD). The thickness of the identified layer is about 50 km. According to data from stations located in the collision zone, MLD is not detected.

Sobre autores

A. Goev

Sadovskiy Institute of Geosphere Dynamics Russian Academy of Sciences

Email: goev@idg.ras.ru
Moscow, Russia

S. Oreshin

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

Yu. Vinogradov

Geophysical Survey of the Russian Academy of Sciences

Obninsk, Kaluga region, Russia

Bibliografia

  1. Yang Y., Ritzwoller M., Lin F., Moschetti M., Shapiro N. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography // Journal of Geophysical Research. 2008. V. 113. B12310. https://doi.org/10.1029/2008JB005833
  2. Thybo H., Bulut N., Grund M., Mauerberger A., Makushkina A., Artemieva I., Balling N., Gudmundsson O., Maupin V., Ottemøller L., Ritter J., Tilmann F. ScanArray – A Broadband Seismological Experiment in the Baltic Shield // Seismological Research Letters. 2021. V. 92. № 5. P. 2811–2823. https://doi.org/10.1785/0220210015
  3. Bogdanova S.V., Gorbatschev R., Garetsky R.G. Europe/East European Craton / In: Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2016. P. 1–18.
  4. Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Заможняя Н.Г., Злобин В.Л., Каулина Т.В., Конилов А.Н., Михайлов В.О., Натапов Л.М., Пийп В.Б., Ступак В.М., Тихоцкий С.А., Трусов А.А., Филиппова И.Б., Шур Д.Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и ТАТСЕЙС: В 2 т. + 1 папка-комплект цветных приложений. М.: Геокарт; ГЕОС, 2010. Т. 1. 408 с. Т. 2. 400 с.
  5. Гоев А.Г., Косарев Г.Л., Ризниченко О.Ю., Санина И.А. Скоростная модель западной̆ части Волго-Уралии методом функции приемника // Физика Земли. 2018. № 6. C. 154–169.
  6. Fu H.Y., Li Z.H., Chen L. Continental mid-lithosphere discontinuity: A water collector during craton evolution // Geophysical Research Letters. 2022. V. 49. e2022GL101569. https://doi.org/10.1029/2022GL101569
  7. Wang Z., Kusky T. The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere // Earth-Science Reviews. 2019. V. 190. P. 557–569. https://doi.org/10.1016/j.earscirev.2019.02.010
  8. Винник Л.П. Сейсмология приемных функций // Физика Земли. 2019. № 1. С. 16–27. https://doi.org/10.31857/S0002333720191162-27
  9. Алешин И.М. Построение решения обратной задачи по ансамблю моделей на примере инверсии приемных функций // Докл. РАН. Науки о Земле. Т. 496. № 1. 2021. С. 63–66. https://doi.org/10.31857/S2686739721010047
  10. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes. 3rd Ed.: The Art of Scientific Computing. New York: Cambridge University Press, 2007.
  11. Artemieva I.M. The continental lithosphere: Reconciling thermal, seismic, and petrologic data // Lithos. 2009. V. 109. No. 1–2. P. 23–46. https://doi.org/10.1016/j.lithos.2008.09.015
  12. Boyce A., Bodin T., Durand S., Soergel D., Debayle E. Seismic evidence for craton formation by underplating and development of the MLD // Geophysical Research Letters. 2024. V. 5. e2023GL106170. https://doi.org/10.1029/2023GL106170
  13. Kennett B.L.N., Engdahl E.R. Traveltimes for global earthquake location and phase identification // Geophys. J. Int. 1991. V. 105. P. 429–465. https://doi.org/10.1111/j.1365–246X.1991.tb06724.x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025