Calculation of binding energy in a fragment of a teflon molecule using density functional theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To explain the increased yield of positive particles from the surface of a positively charged dielectric, a computer simulation was performed using the density functional theory. The model system was a fragment of a Teflon molecule (CF2) in a vacuum. The binding energy of atoms in this system in the neutral state (without removing electrons from the system) was calculated, after which a similar calculation was performed for an ionized fragment of the Teflon molecule (with the removal of one electron from the system of atoms). The calculations showed that the energy of complete dissociation of one fragment of the Teflon molecule in the neutral state is 11.02 eV, which agrees with the experimental data with good accuracy. The binding energy in the ionized fragment of the molecule is 2.86 eV, while the Teflon molecule fragment dissociates into a neutrally charged fluorine atom and a positively charged CF fragment. In calculations taking into account the dipole moment of the Teflon molecule fragment, the binding energy value was equal to — 2.75 eV, the Teflon molecule fragment also dissociated into a neutral fluorine atom and a positively charged CF fragment. The obtained results may be the reason for the increased release of positive particles from the surface of a positively charged massive dielectric.

Full Text

Restricted Access

About the authors

S. S. Moskalenko

Lomonosov Moscow State University

Author for correspondence.
Email: ivan.gainullin@physics.msu.ru
Russian Federation, Moscow

Yu. A. Melkozerova

Lomonosov Moscow State University

Email: ivan.gainullin@physics.msu.ru
Russian Federation, Moscow

I. K. Gainullin

Lomonosov Moscow State University

Email: ivan.gainullin@physics.msu.ru
Russian Federation, Moscow

References

  1. Helium Ion Microscopy. / Ed. Hlawacek G., Golzahauser A. Springer International Publishing, 2016. P. 526. https://www.doi.org/10.1007/978-3-319-41990-9
  2. Petrov Yu.V., Anikeva A.E., Vyvenko O.F. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 425. P. 11. https://www.doi.org/10.1016/j. nimb.2018.04.001
  3. Ohya K., Yamanaka T., Takami D., Inai K. // Proc. SPIE. 2010. V. 7729. P. 146. https://www.doi.org/10.1117/12.853488
  4. Rau E.I., Evstafeva E.N., Andrianov M.A. // Phys. Solid State. 2008. V. 50. P 621. https://www.doi.org/10.1134/S1063783408040057
  5. Fakhfakh S., Jbara O., Belhaj M., Fakhfakh Z., Kallel A., Rau E.I. // Europ. Phys. J. Appl. Phys. 2003. V. 21. № 2. P. 137. https://www.doi.org/10.1051/epjap:2003001
  6. Baragiola R.A., Shi M., Vidal R., Dukes C. // Phys. Rev. B. 1998. V. 58. № 19. P. 13212. https://www.doi.org/10.1103/PhysRevB.58.13212.
  7. Shi J., Fama M., Teolis B., Baragiola R.A. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 19. P. 2888. https://www.doi.org/10.1016/j.nimb.2010.04.013
  8. Yogev S., Levin J., Molotskii M., Schwarzman A., Avayu O., Rosenwaks Y. // J. Appl. Phys. 2008. V. 103. Iss. 6. P. 064107. https://www.doi.org/10.1063/1.2895194
  9. Nagatomi T., Kuwayama T., Takai Y., Yoshino K., Morita Y., Kitayama M., Nishitani M. // Appl. Phys. Lett. 2008. V. 92. Iss. 8. P. 084104. https://www.doi.org/10.1063/1.2888957
  10. Nagatomi T., Kuwayama T., Yoshino K., Takai Y., Morita Y., Nishitani M., Kitagawa M. // J. Appl. Phys. 2009. V. 106. Iss. 10. P. 104912. https://www.doi.org/10.1063/1.3259428
  11. Ohya K. // J. Vacuum Sci. Technol. B. 2014. V. 32. Iss. 6. P. 06FC01. https://www.doi.org/10.1116/1.4896337
  12. Minnebaev K.F., Rau E.I., Tatarintsev A.A. // Phys. Solid State. 2019. V. 61. P. 1013. https://www.doi.org/10.1134/S1063783419060118
  13. Rau E.I., Tatarintsev A.A., Zykova E.Yu. Markovets (Ozerova) K.E., Minnebaev K.F. // Vacuum. 2020. V. 177. P. 109373. https://www.doi.org/10.1016/j.vacuum.2020.109373
  14. Зыкова Е.Ю., Иешкин А.Е., Миннебаев К.Ф., Озерова К.Е., Орликовская Н.Г., Рау Э.И., Татаринцев А.А. // Вестник Московского университета. Серия 3. Физика. Астрономия. 2023. № 2. https://www.doi.org/10.55959/MSU0579-9392.78.2320302
  15. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. № 4A. P. A1133. https://www.doi.org/10.1103/PhysRev.140.A1133
  16. Gainullin I.K. // Phys. Rev. A. 2017. V. 95. № 5. P. 052705. https://www.doi.org/10.1103/PhysRevA.95.052705
  17. Gainullin I.K. // Computer Phys. Comm. 2017. V. 210. P. 72. https://www.doi.org/10.1016/j.cpc.2016.09.021
  18. Goldberg A., Yarovsky I. // Phys. Rev. B. 2007. V. 75. № 19. P. 195403. https://www.doi.org/10.1103/PhysRevB.75.195403
  19. Lininger C.N., Gauthier J.A., Li W.-L., Rossomme E., Welborn V.V., Lin Z., Head-Gordon T., Head-Gordon M., Bell A.T. // Phys. Chem. Chem. Phys. 2021. V. 23. № 15. P. 9394. https://www.doi.org/10.1039/D0CP03821K
  20. Ciufo R.A., Han S., Floto M.E., Eichler J.E., Henkelman G., Mullins C.B. // Phys. Chem. Chem. Phys. 2020. V. 22. № 27. P. 15281. https://www.doi.org/10.1039/D0CP02410D
  21. Liao X., Lu R., Xia L., Wang Z., Zhao Y. // Energy Environmental Mater. 2022. V. five. № 1. P. 157. https://www.doi.org/10.1002/eem2.12204
  22. Løvvik O.M. // Surf. Sci. 2005. V. 583. № 1. P. 100. https://www.doi.org/10.1016/j.susc.2005.03.028
  23. Москаленко С.С., Мелкозерова Ю.А., Иешкин А.Е., Гайнуллин И.К. // Вестник Московского университета. Серия 3. Физика. Астрономия. 2024. № 3. С. 6 https://www.doi.org/10.55959/MSU0579-9392.79.2430303.
  24. Мелкозерова Ю.А., Гайнуллин И.К. // Вестник Московского университета. Серия 3. Физика. Астрономия. 2023. № 4. С. 115. https://www.doi.org/10.55959/MSU0579-9392.79.2340504
  25. Москаленко С.С., Гайнуллин И.К. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. №1. C. 103. https://www.doi.org/10.31857/S1028096022110152
  26. Hildenbrand D.L. // Chem. Phys. Lett. 1975. V. 32. № 3. P. 523. https://www.doi.org/10.1016/0009-2614(75)85231-6
  27. Sigmund P. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 27. № 1. P. 1. https://www.doi.org/10.1016/0168-583X(87)90004-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model system of a fragment of a Teflon molecule (CF2). Carbon atoms (C) are shown in black, fluorine atoms (F) are shown in gray.

Download (60KB)

Copyright (c) 2025 Russian Academy of Sciences