Evolution of Nanohardness of Binary Titanium-Based Solutions under High-Pressure Torsion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Based on the phenomenological theory in the Landau approximation, a model has been developed to describe experiments on measuring the nanohardness of binary titanium-based solutions under high pressure torsion. Possible mechanisms for the appearance in the experiment of asymmetry of this quantity relative to the middle of the radius of a cylindrical sample are determined. Additionally, the behavior of the radial and angular components of nanohardness in the presence of a point defect in the material under study has been studied.

Авторлар туралы

Yu. Zavorotnev

Galkin Donetsk Institute for Physics and Engineering

Email: straumal@issp.ac.ru
Ресей, Donetsk

G. Davdyan

Osipyan Institute of Solid State Physics of the RAS

Email: straumal@issp.ac.ru
Ресей, Chernogolovka

V. Varyukhin

Galkin Donetsk Institute for Physics and Engineering

Email: straumal@issp.ac.ru
Ресей, Donetsk

A. Petrenko

Galkin Donetsk Institute for Physics and Engineering

Email: straumal@issp.ac.ru
Ресей, Donetsk

E. Tomashevskaya

Tugan-Baranovsky Donetsk National University of Economics and Trade

Email: straumal@issp.ac.ru
Ресей, Donetsk

B. Straumal

Osipyan Institute of Solid State Physics of the RAS

Хат алмасуға жауапты Автор.
Email: straumal@issp.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Özyürek D., Tekeli S. // High Temp. Mater. Proc. 2011. V. 30. P. 175. https://doi.org./0.1515/HTMP.2011.026
  2. Wang M., Lin X., Huang W. // Mater. Technol. 2016. V. 31. P. 90. https://doi.org./10.1179/1753555715Y.0000000079
  3. Cui C., Hu B.M., Zhao L., Liu S. // Mater. Design. 2011. V. 32. P. 1684. https://doi.org./10.1016/j.matdes.2010.09.011
  4. Pramanik A., Basak A.K. // Metals. 2023. V. 13. P. 1536. https://doi.org./10.3390/met13091536
  5. Zhao Z., Ji H., Zhong Y., Han C., Tang X. // Materials. 2022. V. 15. P. 8589. https://doi.org./10.3390/ma15238589
  6. Hong X.D., Zheng H.R., Liang D. // Mater. Lett. 2021. V. 304. P. 130717. https://doi.org./10.1016/j.matlet.2021.130717
  7. Thomas M., Jackson M. // Scripta Mater. 2012. V. 66. P. 1065. https://doi.org./10.1016/j.scriptamat.2012.02.049
  8. Bolzoni L., Herraiz E., Ruiz-Navas E.M., Gordo E. // Mater. Design. 2014. V. 60. P. 628. https://doi.org./10.1016/j.matdes.2014.04.019
  9. Marković G., Manojlović V., Ružić J., Sokić M. // Materials. 2023. V. 16. P. 6355. https://doi.org./10.3390/ma16196355
  10. Dai J., Zhu J., Chen C., Fei Weng F. // J. Alloys Compd. 2016. V. 685. P. 784. https://doi.org./10.1016/j.jallcom.2016.06.212
  11. Горнакова А.С., Страумал Б.Б., Головин Ю.И., Афоникова Н.С., Пирожкова Т.С., Тюрин А.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. Т. 15. № 11. С. 45. https://doi.org./10.31857/S102809602111008X (Gornakova A.S., Straumal B.B., Golovin Yu.I., Afonikova N.S., Pirozhkova T.S., Tyurin A.I. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2021. V. 15. P. 1154. https://doi.org./10.31857/S102809602111008X).
  12. Zavorotnev Yu.D., Metlov L.S., Glezer A.M., Zakha-rov A.Yu., Tomashevskaya E.Yu. // J. Phys.: Conf. Ser. 2020. V. 1658. P. 012080. https://doi.org./10.1088/1742-6596/1658/1/012080
  13. Korneva A., Kilmametov A., Zavorotnev Yu., Metlov L., Popova O., Baretzky B. // Mater. Lett. 2021. V. 302. P. 130386. https://doi.org./10.1016/j.matlet.2021.130386
  14. Straumal B.B., Kilmametov A.R., Korneva A., Zieba P., Zavorotnev Y., Metlov L., Popova O., Baretzky B. // Crystals. 2021. V. 11. P. 766. https://doi.org./10.3390/cryst11070766
  15. Заворотнев Ю.Д., Страумал П.Б., Томашевская Е.Ю., Страумал Б.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2024. № 3. С. 3.
  16. Straumal P., Zavorotnev Y., Metlov L. Popova O. // Materials. 2022. V. 15. P. 6970. https://doi.org./10.3390/ma15196970
  17. Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. // Физика металлов и металловедение. 2022. Т. 123. С. 1283. https://doi.org./10.31857/S0015323022600964 (Straumal B.B., Zavorotnev Yu.D., Metlov L.S., Straumal P.B., Petrenko A.G., Tomashevskaya E.Yu. // Phys. Metal. Metallogr. 2023. V. 123. P. 1208. https://doi.org./110.1134/S0031918X22601111)
  18. Заворотнев Ю.Д., Метлов Л.С., Томашевская Е.Ю. // ФТТ. 2022. Т. 64. С. 462. https://doi.org./10.21883/FTT.2022.04.52186.263
  19. Шубников А.В. // Зап. Всесоюз. минерал. об-ва. 1956. Т. 85. С. 108.
  20. Эренрейх Г., Шварц Л. Электронная структура сплавов. М.: Мир, 1979. 200 с.
  21. Straumal B.B., Kilmametov A.R., Ivanisenko Y., Kurmanaeva L., Baretzky B., Kucheev Y.O., Zięba P., Korneva A., Molodov D.A. // Mater. Lett. 2014. V. 118. P. 111. https://doi.org./10.1016/j.matlet.2013.12.042
  22. Straumal B.B., Kilmametov A.R., Baretzky B., Kogten-kova O.A., Straumal P.B., Litynska-Dobrzynska L., Chulist R., Korneva A., Zieba P. // Acta Mater. 2020. V. 195. P. 184. https://doi.org./10.1016/j.actamat.2020.05.055

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024