Воздействие мощного ионного пучка наносекундной длительности на промышленную керамику AlN

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано разрушение и изменение элементного состава поверхностных слоев алюмонитридной керамики при воздействии мощного ионного пучка наносекундной длительности. Определены пространственные характеристики поверхностного разрушения керамики. Разрушение происходит преимущественно по границам частиц (кристаллитов), из которых спекается керамика. Наблюдается полное удаление части таких частиц из поверхностного слоя как при однократном, так и при многократном облучении с плотностью тока 150 А/см2. Обнаружено образование капель полусферической формы различных размеров как на облученной поверхности керамики, так и на поверхности после удаления фрагмента разрушения (при многократном облучении). Установлено обеднение поверхностного слоя керамики азотом. Обсуждены возможные механизмы наблюдаемых изменений в поверхностном слое керамики.

Полный текст

Доступ закрыт

Об авторах

В. С. Ковивчак

Омский научный центр Сибирского отделения Российской академии наук, Институт радиофизики и физической электроники

Автор, ответственный за переписку.
Email: kvs_docent@mail.ru
Россия, Омск

Список литературы

  1. Anandkumar M., Trofimov E. // J. Alloys Compd. 2023. V. 960. P. 170690. http://doi/org/10.1016/j.jallcom.2023.170690
  2. Vaiani L., Boccaccio A., Uva A.E., Palumbo G., Piccininni A., Guglielmi P., Cantore S., Santacroce L., Charitos I.A., Ballini A. // J. Funct. Biomater. 2023. V. 14. P. 146. http://doi/org/10.3390/jfb14030146
  3. Nisar A., Hassan R., Agarwal A., Balani K. // Ceram. Int. 2022. V. 48. P. 8852. http://doi/org/10.1016/j.ceramint.2021.12.199
  4. Sokovkin S.Yu., Balezin M.E. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 978. P. 164466. http://doi/org/10.1016/j.nima.2020.164466
  5. Ebert J.N., Rheinheimer W. // Open Ceram. 2022. V. 11. P. 100280. http://doi/org/10.1016/j.oceram.2022.100280
  6. Lizcano M., Williams T.S., Shin E.-S.E., Santiago, D., Nguyen B. // Materials. 2022. V. 15. P. 8121. http://doi/org/10.3390/ma15228121
  7. Remnev G.E., Isakov I.F., Opekounov M.S. et al. // Surf. Coat. Technol. 1999. V. 114. P. 206. http://doi/org/10.1016/S0257-8972(99)00058-4
  8. Remnev G.E., Tarbokov V.A., Pavlov S.K. // Inorg. Mater. Appl. Res. 2022. V. 13. P. 62. http://doi/org/10.1134/S2075113322030327
  9. Uglov V.V., Remnev G.E., Kuleshov A.K., Astashinski V.M., Saltymakov M.S. // Surf. Coat. Technol. 2010. V. 204. P. 1952. http://doi/org/10.1016/j.surfcoat.2009.09.039
  10. Kovivchak V.S., Panova T.V., Burlakov R.B. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2008. V. 2. P. 200. http://doi/org/ 10.1134/S1027451008020079
  11. Kovivchak V.S., Panova T.V., Krivozubov O.V., Davletkil’deev N.A., Knyazev E.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2012. V. 6. P. 244. http://doi/org/10.1134/S1027451012030123
  12. Kovivchak V.S., Panova T.V. // J. Surf. Invest. X-Ray, Synchrotron, Neutron Tech. 2019. V. 13. P. 1252. http://doi/org/10.1134/S1027451019060363
  13. Liang G., Shen J., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 409. P. 277. http://doi/org/10.1016/j.nimb.2017.04.048
  14. Shen J., Shahid I., Yu X. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 413. P. 6. http://doi/org/10.1016/j.nimb.2017.09.031
  15. Romanov I.G., Tsareva I.N. // Tech. Phys. Lett. 2001. V. 27. P. 695. http://doi/org/10.1134/1.1398972
  16. Nakano H., Watari K., Hayashi H., Urabe K. // J. Am. Ceram. Soc. 2004. V. 85. P. 3093. http://doi/org/10.1111/j.1151-2916.2002.tb00587.x
  17. De Faoite D., Browne D.J., Chang-Díaz F.R. et al. // J. Mater. Sci. 2012. V. 47. P. 4211. http://doi/org/10.1007/s10853-011-6140-1
  18. Goldstein J.I., Newbury D.E., Echlin P. et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Kluwer acad. /Plenum publ., 2003. 689 p.
  19. Ghyngazov S., Pavlov S., Kostenko V., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 434. P. 120. http://doi/org/10.1016/j.nimb.2018.08.037
  20. Kostenko V., Pavlov S., Nikolaeva S. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 289. P. 012019. http://doi/org/10.1088/1757-899X/289/1/012019
  21. Ghyngazov S.А., Boltueva V.А. // Ceram. Int. 2023. V. 49. P. 37061. http://doi/org/10.1016/j.ceramint.2023.09.099
  22. Ghyngazov S., Kostenko V., Shevelev S., Lysenko E., Surzhikov A. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 464. P. 89. http://doi/org/10.1016/j.nimb.2019.12.013
  23. Zhang S., Yu X., Zhang J. et al. // Vacuum. 2021. V. 187. P. 110154. http://doi/org/10.1016/j.vacuum.2021.110154

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. РЭМ-изображение исходной поверхности керамики AlN (а) и облученной одним (б) и тремя (в, г) импульсами МИП с плотностью тока 150 А/см2.


© Институт физики твердого тела РАН, Российская академия наук, 2025