Influence of UV and visible radiation on optical properties of coatings based on two-layer hollow particles of silicon dioxide and zinc oxide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comparative analysis in situ of diffuse reflection spectra in the range from 200 to 2500 nm and their changes after irradiation of coatings based on polymethylphenylsiloxane resin and pigment powders of two-layer hollow particles ZnO/SiO2 and SiO2/ZnO was carried out. Irradiation was performed with light from a xenon arc lamp simulating the solar radiation spectrum, with an intensity of 3 e.s.i. (equivalent of solar irradiation, 1 e.s.i. = 0.139 W/cm2). The photostability of the studied coatings based on two-layer hollow ZnO/SiO2 and SiO2/ZnO particles was estimated relative to coatings based on ZnO polycrystals from an analysis of the difference diffuse reflectance spectra obtained by subtracting the spectra of unirradiated and irradiated samples. It has been found that the intensity of the induced absorption bands in coatings based on ZnO/SiO2 and SiO2/ZnO hollow particles is lower than in coatings based on ZnO microparticles, and the radiation resistance when assessing changes in solar absorptance (ΔαS) is twice as high. The increase in photostability is probably determined by the different nature of defect accumulation: for bulk microparticles, radiation defects can accumulate inside the grains, while in hollow particles, the accumulation of defects can occur only within the thin shell of the sphere.

Texto integral

Acesso é fechado

Sobre autores

D. Fedosov

Tomsk State University of Control Systems and Radioelectronics

Email: v1ta1y@mail.ru
Rússia, Tomsk

V. Neshchimenko

Аmur State University

Autor responsável pela correspondência
Email: v1ta1y@mail.ru
Rússia, Blagoveshchensk

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics; Аmur State University

Email: v1ta1y@mail.ru
Rússia, Tomsk; Blagoveshchensk

S. Yuryev

Tomsk State University of Control Systems and Radioelectronics; Аmur State University

Email: v1ta1y@mail.ru
Rússia, Tomsk; Blagoveshchensk

Bibliografia

  1. Li C., Liang Z., Xiao H., Wu Y., Liu Y. // Mater. Lett. 2010. V. 64. № 18. P. 1972. https://doi.org/10.1016/j.matlet.2010.06.027
  2. Wang Y., Sunkara B., Zhan J., He J., Miao L., McPherson G.L., John V.T., Spinu L. // Langmuir. 2012. V. 28. P. 13783. https://doi.org/10.1021/la302841c
  3. Rasmidi R., Duinong M., Chee F.P. // Radiat. Phys. Chem. 2021. V. 184. P. 109455. https://doi.org/10.1016/j.radphyschem.2021.109455
  4. Li C., Mikhailov M.M., Neshchimenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 319. P. 123. https://doi.org/10.1016/j.nimb.2013.11.007
  5. Zatsepin A.F., Kortov V.S., Biryukov D.Y. // Radiat. Eff. Def. Solids. 2002. V. 157. P. 595. https://doi.org/10.1080/10420150215765
  6. Nishikawa H., Watanabe E., Ito D., Ohki Y. // J. Non-cryst. Solids. 1994. V. 179. P. 179. https://doi.org/10.1016/0022-3093(94)90695-5
  7. Boscaino R., Cannas M., Gelardi F.M., Leone M. // Nucl. Instrum. Methods. Phys. Res. B. 1996. V. 116. P. 373. https://doi.org/10.1016/0168-583X(96)00073-0
  8. Radtsig R.A.B., Senchenya I.N. // Russ. Chem. Bull. 1996. V. 45. P. 1849. https://doi.org/10.1007/BF01457762
  9. Skuja L. // J. Non-Cryst. Solids. 1998. V. 239. P. 16. https://doi.org/10.1016/S0022-3093(98)00720-0
  10. Pantelides S.T., Lu Z.-Y., Nicklaw C., Bakos T., Rashkeev S.N., Fleetwood D.M., Schrimpf R.D. // J. Non-Cryst. Solids. 2008. V. 354. P. 217. https://doi.org/10.1016/j.jnoncrysol.2007.08.080
  11. Erhart P., Albe K., Klein A. // Phys. Rev. B. 2006. V. 73. P. 205203. https://doi.org/10.1103/PhysRevB.73.205203
  12. Oba F., Togo A., Tanaka I., Paier J., Kresse G. // Phys. Rev. B. 2008. V. 77. P. 245202. https://doi.org/10.1103/PhysRevB.77.245202
  13. Lima S.A.M., Sigoli F.A., Jafelicci M.Jr., Davolos M.R. // Int. J. Inorg. Mater. 2001. V. 3. P. 749. https://doi.org/10.1016/S1466-6049(01)00055-1
  14. Hu J., Pan B.C. // J. Chem. Phys. 2008. V. 129. P. 154706. https://doi.org/10.1063/1.2993166
  15. Sun Y., Wang H. // Physica B. 2003. V. 325. P. 157. https://doi.org/10.1016/S0921-4526(02)01517-X
  16. Lin B., Fu Z., Jia Y. // Appl. Phys. Lett. 2001. V. 79. P. 943. https://doi.org/10.1063/1.1394173
  17. Дудин А.Н., Юрина В.Ю., Михайлов М.М., Ли Ч., Нещименко В.В. // Изв. вузов. Физика. 2023. Т. 66. № 7 (788). С. 117. https://doi.org/10.17223/00213411/66/7/14
  18. Дудин А.Н., Нещименко В.В., Ли Ч. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 4. С. 70. https://doi.org/10.31857/S1028096022040069
  19. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Experim. Tech. 1985. V. 28. P. 929.
  20. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
  21. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffuse reflectance spectra of coatings based on organosilicon varnish without pigments (1), bulk ZnO microparticles (2), hollow two-layer particles SiO2/ZnO (3) and ZnO/SiO2 (4).

Baixar (78KB)
3. Fig. 2. Difference spectra of diffuse reflectance obtained by subtracting the spectra of organosilicon varnish from the spectra of bulk ZnO microparticles (1), hollow bilayer SiO2/ZnO particles (2) and ZnO/SiO2 (3).

Baixar (69KB)
4. Fig. 3. Difference spectra of diffuse reflectance of coatings based on bulk ZnO microparticles after exposure to electromagnetic radiation of the solar spectrum for: 3 (1); 6 (2); 9 (3); 12 (4); 15 h (5).

Baixar (78KB)
5. Fig. 4. Difference spectra of diffuse reflectance of coatings based on hollow two-layer ZnO/SiO2 particles after exposure to electromagnetic radiation of the solar spectrum for: 3 (1); 6 (2); 9 (3); 12 (4); 15 h (5).

Baixar (72KB)
6. Fig. 5. Difference spectra of diffuse reflectance of coatings based on hollow two-layer SiO2/ZnO particles after exposure to electromagnetic radiation of the solar spectrum for: 3 (1); 6 (2); 9 (3); 12 (4); 15 h (5).

Baixar (67KB)
7. Fig. 6. Dependence of changes in the absorption coefficient ΔαS after exposure to electromagnetic radiation of the solar spectrum on coatings based on organosilicon varnish and bulk ZnO microparticles (1), hollow two-layer particles SiO2/ZnO (2) and ZnO/SiO2 (3).

Baixar (66KB)
8. Fig. 7. Volume distribution of absorbed radiation by a microhexahedron (a), ZnO/SiO2 (b) and SiO2/ZnO (c) microspheres.

Baixar (170KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025