Anomaly in the interaction between microfocus bremsstrahlung from a new 18 MEV betatron-based source and a sharp edge of a steel plate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Images of the distribution of microfocus bremsstrahlung from a new source based on an 18 MeV betatron, which has passed a 0.4 mm thick steel plate with a 1.2 mm wide sharp edge, are presented. The photographs demonstrate an anomaly in the interaction between the microfocus bremsstrahlung and the plate tip in the form of a narrow dark stripe along the tip image, which indicates an increase in the radiation intensity in this area. The dark stripe provides a contrast in the tip image, which, together with the high sharpness due to the microfocus of the source, allows the tip position to be visualized with high precision. The dark stripe in the images was not observed when using radiation from 450 and 45 keV X-ray tubes with foci of 400 and 100 µm. The absorption of radiation ensures a smooth change in the blackening of the sharp edge and blurring of the tip in the image due to the size of the radiation source. The observed effect with microfocus radiation of the new source is determined by the scattering of radiation by the tip with the possible participation of wave effects, which needs to be further investigated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Rychkov

National Research Tomsk Polytechnic University

Хат алмасуға жауапты Автор.
Email: rychkov@tpu.ru
Ресей, Tomsk

V. Kaplin

National Research Tomsk Polytechnic University

Email: rychkov@tpu.ru
Ресей, Tomsk

V. Smolyanskii

National Research Tomsk Polytechnic University

Email: vsmol@tpu.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Рычков М.М., Каплин В.В., Сухарников К.В., Васьковский И.К. // Письма в ЖЭТФ. 2016. Т. 103. Вып. 11. С. 816. http://jetpletters.ru/ps/2128/article_31935.shtml
  2. Rychkov M.M., Kaplin V.V., Malikov E.L., Smolyanskii V.A., Gentsel’man V., Vaskovs’kii I.K. // J. Nondestructive Evaluation. 2018. V. 37. № 1. P. 13. https://doi.org/10.1007/s10921-018-0464-6
  3. Патент 2072643 (РФ). Способ получения фокусного пятна тормозного излучения малых размеров в циклическом ускорителе заряженных частиц. / Пушин В.С., Чахлов В.Л. // 1997. http://www.findpatent.ru/patent/207/2072643.html
  4. Yamada H. // Jpn. J. Appl. Phys. 1996. V. 35. № 2A. P. L182. http://doi.org/10.1143/JJAP.35.L182
  5. Gambaccini M., Marziani M., Taibi A., Cardarelli P., Di Domenico G., Mastella E. // Nucl. Instrum. Methods Phys. Res. A. 2012. V. 664. P. 78. https://doi.org/10.1016/j.nima.2011.10.028
  6. Yamada H. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 199. Iss. 6. P. 509. http://doi.org/10.1016/S0168-583X(02)01593-8
  7. Рычков М.М., Каплин В.В., Смолянский В.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 3. С. 14. https://sciencejournals.ru/view-article/?j=poverh&y=2021 &v=0&n=3&a=Poverh2103012Rychkov
  8. Website of the IE-NTD Ltd: http://ie-ndt.co.uk/en4625astme2002duplexiqi.html
  9. Wilkins S.V., Gureyev T.E., Gao D., Pogany A., Stevenson A.W. // Nature. 1996. V. 384. P. 335. https://doi.org/10.1038/384335a0
  10. Snigirev A., Snigireva I., Kohn V., Kuznetsov S., Schelokov I. // Rev. Sci. Instrum. 1995. V. 66. P. 5486. https://doi.org/10.1063/1.1146073
  11. Gureyev T.F., Paganin D.M., Mayers G.R., Nesterets Y.I., Wilkins S.W. // Appl. Phys. Lett. 2006. V. 89. № 3. P. 034102. https://doi.org/10.1063/1.2226794
  12. Laperle C.M., Wintermeyer Ph., Wands J.R., Shi D., Anastasio M. A., Li X., Arh B., Diebold G.J., Rose-Petruck C. // Appl. Phys. Lett. 2007. V. 91. P. 173901. https://doi.org/10.1063/1.2802728
  13. Gasilov S.V., Fayenov A.Ya., Pikuz T.A., Skobelev I.Yu., Calegary F., Vozzy C., Nisoli M., Sansone G., Valentiny G., De Silvestry S., Stagira S. // JETP Lett. 2008. V. 87. № 5. P. 238. https://doi.org/10.1134/S0021364008050032
  14. El-Ghazaly M., Backe H., Lauth W., Kube G., Kunz P., Sharafutdinov A., Weber T. // Eur. Phys. J. A. 2006. V. 28. P. 197. http://doi.org/10.1140/epja/i2006-09-021-6
  15. Hirai T., Yamada H., Sasaki M., Hasegawa D., Morita M., Oda Y., Takaku J., Hanashima T., Nitta N., Takahashi M., Murata K. // J. Synchrotron Rad. 2006. V. 13. P. 397. https://doi.org/10.1107/S0909049506027026
  16. Yamada H., Hasegawa D., Yamada T., Kleev A.I., Minkov D., Miura N., Moon A., Hirai T. Haque M. // Comprehensive Biomed. Phys. 2014. V. 8. P. 43. https://www.sciencedirect.com/science/article/abs/pii/B9780444536327006043?via%3Dihub
  17. Yamada H., Hiraia T., Morita M, Hasegawa D, Hanashima M. // Proc. SPIE. 2008. V. 7078. http://doi.org/10.1117/12.796333
  18. Рычков М.М., Каплин В.В., Смолянский В.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 9. С. 93. https://sciencejournals.ru/view-article/?j=poverh&y=2022 &v=0&n=9&a=Poverh2209017Rychkov
  19. Van Heekeren J., Kostenko A., Hanashima T., Yamada H., Stallinga S., Offerman E., Vliet L. // Med. Phys. 2011. V. 38. № 9. P. 5136. http://doi.org/10.1118/1.3622606
  20. Hwu Y., Tsai Wen-Li, Groso A., Margaritondo G., Ho Je J. // J. Phys. D. 2002. V. 35. № 13. P. R105. http://doi.org/10.1088/0022-3727/35/13/201

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the experiment (a): 1 — betatron chamber (top view); 2 — target oriented along the electron beam; 3 — goniometer; 4 — steel plate with a sharp edge located at a distance L1 from the target; 5 — X-ray film located at a distance L2 from the target. Photograph (b) (magnification M = 1.1) showing the position of the plate (1) with the left sharp edge on the radiation beam and the thick steel plate serving as a holder (2). The light line shows the direction of the target plane. Schematic diagram of the dependence of the effective horizontal size of the SH source on the horizontal angle θH of radiation emission from a target of thickness t and width T oriented along the electron beam e (c).

Жүктеу (111KB)
3. Fig. 2. Fragment of the bremsstrahlung distribution obtained with magnification M = 2.43, generated in a narrow (t = 13 μm) Ta target of the 18 MeV betatron, after its interaction with a 0.4 mm thick steel plate with a left sharp edge 1.2 mm wide (a), below — an additionally enlarged part of the plate tip image. Densitogram of the sharp edge, measured along the L line (b). Fragment of the bremsstrahlung distribution with magnification M = 1.1 (c), below — an additionally enlarged part of the plate tip image. Densitogram of the sharp edge (d).

Жүктеу (205KB)
4. Fig. 3. Fragment of the distribution of X-ray bremsstrahlung with an energy of 450 keV obtained with magnification of M = 2.3, having passed through a 0.4 mm thick steel plate with a left sharp edge (a); at the bottom — an additionally enlarged part of the plate tip image. Densitogram of the sharp edge, measured along the line L (b). Fragment of the enlarged (M = 4.3) image of a 0.4 mm thick plate with a left sharp edge, obtained using X-ray radiation with an energy of 45 keV (c). Densitogram of the image of the sharp edge, measured along the line L (d). Fragment of the enlarged (M = 4.3) image of a 0.1 mm thick plate with a left sharp edge 0.4 mm wide, obtained using X-ray radiation with an energy of 45 keV (d). Densitogram of the sharp edge, measured along the line L (e).

Жүктеу (147KB)
5. Fig. 4. Calculated normalized distributions of the brightness of the tip image of a plate with a thickness of: a – 0.4 mm for photon energies of 400 (1), 200 (2) and 100 keV (3); b – 0.4 mm for photon energies of 40 (1), 30 (2) and 20 keV (3); c – 0.1 mm for photon energies of 40 (1), 20 (2) and 15 keV (3).

Жүктеу (122KB)

© Russian Academy of Sciences, 2025