Analysis of elastic properties of cubic crystals of simple substances using the diagram a – ν0
- 作者: Epishin A.I.1, Lisovenko D.S.2
-
隶属关系:
- Institute of Structural Macrokinetics and Materials Science named after A. G. Merzhanov of RAS
- Institute for Problems in Mechanics named after A. Yu. Ishlinsky of RAS
- 期: 编号 4 (2025)
- 页面: 58-79
- 栏目: Articles
- URL: https://stomuniver.ru/1026-3519/article/view/690608
- DOI: https://doi.org/10.31857/S1026351925040047
- EDN: https://elibrary.ru/bnivqo
- ID: 690608
如何引用文章
详细
The graphical diagram A – n0 proposed earlier by the authors was used to analyze the elastic properties of cubic crystals of simple substances. The elastic properties of crystals both at room temperature and their temperature dependences are considered. As the temperature increases, a general trend is observed for most crystals of simple substance: the points (A, n0) characterizing the elastic properties of crystals shift in the direction of the limiting angle of the diagram (A = 1.5, n0 = 0.5), i.e. in the direction of the region of special extrema being characteristic of metastable crystals, for example, such as crystals with shape-memory effect. The use of the A – n0 diagram made it possible to graphically represent and explain the relationships between the basic values of the elastic moduli of cubic crystals: Young’s modulus E0, shear modulus G0, and volumetric modulus of elasticity B.
作者简介
A. Epishin
Institute of Structural Macrokinetics and Materials Science named after A. G. Merzhanov of RAS
编辑信件的主要联系方式.
Email: a.epishin2021@gmail.com
Chergonolovka, Russia
D. Lisovenko
Institute for Problems in Mechanics named after A. Yu. Ishlinsky of RAS
Email: lisovenk@ipmnet.ru
Moscow, Russia
参考
- Haussühl S. Kristallphysik, Physik-Verlag, Weinheim, 1983. 434 p.
- Blackman M. On anomalous vibrational spectra // Proc. Roy. Soc. A. 1938. V. 164. № 916. P. 62–79. https://doi.org/10.1098/rspa.1938.0005
- Ledbetter H. Blackman diagrams and elastic-constant systematics: in Handbook of Elastic Properties of Solids, Liquids, and Gases, Ed. by M. Levy, H. Bass, and R. Stern (Academic Press, San Diego, 2000), V. II. Р. 57–64. https://doi.org/10.1016/B978-012445760-7/50029-0
- Svetlov I.L., Epishin A.I., Krivko A.I. et al. Anisotropy of Poisson ratio of nickel base alloy single crystals // Dokl. Akad. Nauk SSSR. 1988. V. 302. № 6. P. 1372–1375.
- Evans K., Nkansah M., Hutchinson I., Rogers S.C. Molecular network design // Nature. 1991. V. 353. № 6340. P. 124–125. https://doi.org/10.1038/353124a0
- Hayes M., Shuvalov A. On the extreme values of Young’s modulus, the shear modulus, and Poisson’s ratio for cubic materials // J. Appl. Mech. 1998. V. 65. № 3. P. 786–787. https://doi.org/10.1115/1.2789130
- Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. https://doi.org/10.1007/978-981-287-275-3
- Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. https://doi.org/10.1039/C6RA27333E
- Ren X., Das R., Tran P. et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
- Wu W., Hu W., Qian G. et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
- Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V.55. № 4. P.461–474. https://doi.org/10.3103/S0025654420040044
- Shitikova M.V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: A Review // Mech. Solids. 2022. V. 57. № 1. P. 1–33. https://doi.org/10.3103/S0025654422010022 Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Experimental study of the properties of metamaterials based on PLA plastic when perforated by a rigid striker // Mech. Solids. 2024. V. 59. № 4. P. 207–215.
- https://doi.org/10.1134/S0025654424604695
- Ting T.C.T., Barnett D.M. Negative Poisson’s ratios in anisotropic linear elastic media // J. Appl. Mech. 2005. V. 72. № 6. P. 929–931. http://dx.doi.org/10.1115/1.2042483
- Paszkiewicz T., Wolski S. Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media // Phys. Status Solidi B. 2007. V. 244. № 3. P. 966–977. https://doi.org/10.1002/pssb.200572715
- Branka A.C., Heyes D.M., Wojciechowski K.W. Auxeticity of cubic materials // Phys. Status Solidi B. 2009. V. 246. № 9. P. 2063–2071. https://doi.org/10.1002/pssb.200982037
- Branka A.C., Heyes D.M., Wojciechowski K.W. Auxeticity of cubic materials under pressure// Phys. Status Solidi B. 2011. V. 248. № 1. P. 96–104. https://doi.org/10.1002/pssb.201083981
- Goldstein R.V., Gorodtsov V.A., Lisovenko D.S. Cubic auxetics // Doklady Physics. 2011. V. 56. № 7. P. 399-402. https://doi.org/10.1134/S1028335811120019
- Goldstein R.V., Gorodtsov V.A., Lisovenko D.S. Classification of cubic auxetics. Phys. Status Solidi B. 2013. V. 250. № 10. P. 2038–2043. https://doi.org/10.1002/pssb.201384233
- Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A. Negative Poisson’s ratio for cubic crystals and nano/microtubes // Phys. Mesomech. 2014. V. 17. № 2. P. 97–115. https://doi.org/10.1134/S1029959914020027
- Krivko A.I., Epishin A.I., Svetlov I.L., Samoilov A.I. Elastic properties of single crystals of nickel alloys // Problems of strength. 1988. № 2. P. 68–75. https://viam.ru/sites/default/files/scipub/1986/1986-199542.pdf
- Epishin A.I., Lisovenko D.S. Extreme values of Poisson’s ratio of cubic crystals. Tech. Phys. 2016. V. 61. № 10. P. 1516–1524. https://doi.org/10.1134/S1063784216100121
- Epishin A.I., Lisovenko D.S. Influence of the crystal structure and type of interatomic bond on the elastic properties of monatomic and diatomic cubic crystals // Mech. Solids. 2022. V. 57. № 6. P. 1344–1358. https://doi.org/10.3103/S0025654422060206
- Second and Higher Order Elastic Constants / Ed. by D.F. Nelson. Springer, 1992. https://doi.org/10.1007/b44185
- Norris A.N. Poisson’s ratio in cubic materials// Proc. Roy. Soc. A. 2006. V. 462. № 2075. P. 3385–3405. https://doi.org/10.1098/rspa.2006.1726
- Lisovenko D.S., Epishin A.I. Anisotropy of residual stress energy in two-component plate crystal structures // Mech. Solids. 2023. V.58. № 6. P. 2043–2057. https://doi.org/10.3103/S0025654423601179
- Schärer U., Jung A., Wachter P. Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS // Physica B. 1998. V. 244. P. 148. https://doi.org/10.1016/S0921-4526(97)00478-X
- Nash H.C., Smith C.S. Single-crystal elastic constants of lithium // J. Phys. Chem. Solids. 1959. V. 9. № 2. P. 113–118. https://doi.org/10.1016/0022-3697(59)90201-X
- Slotwinski T., Trivisonno J. Temperature dependence of the elastic constants of single crystal lithium // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1276–1278. https://doi.org/10.1016/0022-3697(69)90386-2
- Bolef D.I., Smith R.E., Miller J.G. Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion // Phys. Rev. B. 1971. V. 3. № 12. P. 4100-4108. https://doi.org/10.1103/PhysRevB.3.4100
- Walker E. Anomalous temperature behaviour of the shear elastic constant C44 in vanadium // Solid State Communications. 1978. V. 28. № 7. P. 587–589. https://doi.org/10.1016/0038-1098(78)90495-7
- Talmor Y., Walker E., Steinemann S. Elastic constants of niobium up to the melting point // Solid State Communications. 1977. V. 23. № 9. P. 649–651. https://doi.org/10.1016/0038-1098(77)90541-5
- Featherston F.H., Neighbours J.R. Elastic Constants of tantalum, tungsten, and molybdenum // Phys. Rev. 1963. V. 130. № 4. P. 1324–1333. https://link.aps.org/doi/10.1103/PhysRev.130.1324
- Walker E., Bujard P. Anomalous temperature behaviour of the shear elastic constant C44 in tantalum // Solid State Communications. 1980. V. 34. № 8. P. 691–693. https://doi.org/10.1016/0038-1098(80)90957-6
- Alers G.A., Neighbours J.R., Sato H. Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy // J. Phys. Chem. Solids. 1960. V. 13. № 1–2. P. 40–55. https://doi.org/10.1016/0022-3697(60)90125-6
- Renaud Ph., Steinemann S.G. High temperature elastic constants of fcc Fe-Ni invar alloys // Physica B: Condensed Matter. 1990. V. 161. № 1–3. P. 75–78. https://doi.org/10.1016/0921-4526(89)90107-5
- Rayne J.A., Chandrasekhar B.S. Elastic Constants of Iron from 4.2 to 300°K // Phys. Rev. 1961. V. 122. № 6. P. 1714–1716. https://link.aps.org/doi/10.1103/PhysRev.122.1714
- Dever D.J. Temperature dependence of the elastic constants in α-iron single crystals: relationship to spin order and diffusion anomalies // J. Appl. Phys. 1972. V. 43. № 8. P. 3293–3301. https://doi.org/10.1063/1.1661710
- Neighbours J.R., Alers G.A. Elastic constants of silver and gold // Phys. Rev. 1958. V. 111. № 3. P. 707–712. https://link.aps.org/doi/10.1103/PhysRev.111.707
- Chang Y.A., Himmel L. Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature // J. Appl. Phys. 1966. V. 37. № 9. P. 3567–3572. https://doi.org/10.1063/1.1708903
- Collard S.M., McLellan R.B. High-temperature elastic constants of gold single-crystals // Acta Metall. Mater. 1991. V. 39. № 12. P. 3143–3151. https://doi.org/10.1016/0956-7151(91)90048-6
- MacFarlane R.E., Rayne J.A., Jones C.K. Anomalous temperature dependence of shear modulus c44 for platinum // Phys Lett. 1965. V .18. № 2. P. 91–92. https://doi.org/10.1016/0031-9163(65)90659-1
- Collard S.M., McLellan R.B. High-temperature elastic constants of platinum single crystals // Acta Metall. Mater. 1992. V. 40. № 4. P. 699–702. https://doi.org/10.1016/0956-7151(92)90011-3
- Rayne J. A. Elastic constants of Palladium from 4.2-300°K // Phys. Rev. 1960. V. 118. № 6. P. 1545–1549. https://link.aps.org/doi/10.1103/PhysRev.118.1545
- Walker E., Ortelli J., Peter M. Elastic constants of monocrystalline alloys of Pd-Rh and Pd-Ag between 4.2°K and 300°K // Phys. Lett. A. 1970. V. 31. № 5. P. 240–241. https://doi.org/10.1016/0375-9601(70)90949-7
- Weinmann C., Steinemann S. Lattice and electronic contributions to the elastic constants of palladium // Solid State Communications. 1974. V. 15. № 2. P. 281–285. https://doi.org/10.1016/0038-1098(74)90758-3
- Yoshihara M., McLellan R.B., Brotzen F.R. The high-temperature elastic properties of palladium single crystals // Acta Metall. 1987. V. 35. № 3. P. 775–780. https://doi.org/10.1016/0001-6160(87)90204-5
- Kamm G.N., Alers G.A. Low-temperature elastic moduli of aluminum // J. Appl. Phys. 1964. V. 35. № 2. P. 327–330. https://doi.org/10.1063/1.1713309
- Gerlich D., Fisher E.S. The high temperature elastic moduli of aluminum // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1197–1205. https://doi.org/10.1016/0022-3697(69)90377-1
- Waldorf D.L., Alers G.A. Low-temperature elastic moduli of lead // J. Appl. Phys. 1962. V. 33. № 1. P. 3266–3269. https://doi.org/10.1063/1.1931149
- Vold C.L., Glicksman M.E., Kammer E.W., Cardinal L.C. The elastic constants for single-crystal lead and indium from room temperature to the melting point // J. Appl. Phys. 1977. V. 38. № 2. P. 157–160. https://doi.org/10.1016/0022-3697(77)90159-7
- Zouboulis E.S., Grimsditch M., Ramdas A.K., Rodriguez S. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study // Phys. Rev. B. 1998. V. 57. № 5. P. 2889–2896. https://doi: 10.1103/PhysRevB.57.2889
- Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300 C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301
- Daniels W.B. Pressure variation of the elastic constants of sodium // Phys. Rev. 1960. V. 119. № 4. P. 1246–1252. https://doi.org/10.1103/PhysRev.119.1246
- Diederich M.E., Trivisonno J. Temperature dependence of the elastic constants of sodium // J. Phys. Chem. Solids. 1966. V. 27. № 4. P. 637–642. https://doi.org/10.1016/0022-3697(66)90214-9
- Martinson R.H. Variation of the elastic constants of sodium with temperature and pressure // Phys. Rev. 1969. V. 178. № 3. P. 902–913. https://doi.org/10.1103/PhysRev.178.902
- Marquardt W.R., Trivisonno J. Low temperature elastic constants of potassium // J. Phys. Chem. Solids. 1965. V. 26. № 2. P. 273–278. https://doi.org/10.1016/0022-3697(65)90155-1
- Gutman E.J., Trivisonno J. Temperature dependence of the elastic constants of rubidium // J. Phys. Chem. Solids. 1967. V. 28. № 5. P. 805–809. https://doi.org/10.1016/0022-3697(67)90009-1
- Barrett C.S. X-ray study of the alkali metals at low temperatures // Acta Cryst. 1956. V. 9. № 8. P. 671–677. https://doi.org/10.1107/S0365110X56001790
- Ernst G., Artner C., Blaschko O., Krexner G. Low-temperature martensitic phase transition of bcc lithium // Phys. Rev. B. 1986. V. 33. № 9. P. 6465–6469. https://doi.org/10.1103/PhysRevB.33.6465
- Pichl W., Krystian M. Martensitic transformation and mechanical deformation of high-purity lithium // Mater. Sci. Eng. A. 1999. V. 273–275. P. 208–212. https://doi.org/10.1016/S0921-5093(99)00372-X
补充文件
