Soliton-like Dispersive Lamb Waves in an Anisotropic Layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For an anisotropic layer with arbitrary elastic anisotropy, dispersion relations for harmonic plane Lamb waves are constructed, and an analysis of solutions for a symmetric fundamental mode at an infinitely small frequency (soliton-like waves) is performed. Dispersion equations for Lamb waves, including the corresponding limiting values, are obtained in explicit form.

About the authors

A. V. Ilyashenko

Moscow State University of Civil Engineering

Author for correspondence.
Email: avi_56@mail.ru
Moscow, Russia

References

  1. Planat M., Hoummady M. Observation of soliton-like envelope modulation generated in an anisotropic quartz plate by metallic in interdigital transducers, Appl. Phys. Lett. // 1989. V. 55. P. 103–112.
  2. Davies R.M. A critical study of the Hopkinson pressure bar // Phil. Trans. R. Soc. 1948. V. A240. P. 375–457.
  3. Mindlin R.D., McNiven H.D. Axially symmetric waves in elastic rods // J. Appl. Mech. 1960. V. 27. P. 145–151.
  4. Onoe M., McNiven H.D., Mindlin R.D. Dispersion of axially symmetric waves in elastic rods // J. Appl. Mech. 1962. V. 29. P. 729–734.
  5. Graff K.F. Wave Motion in Elastic Solids. Clarendon Press: Oxford. 1975.
  6. Kawahara T. Oscillatory solitary waves in dispersive media // J. Phys. Soc. Japan. 1972. V. 33. P. 260–268.
  7. Soerensen M.P., Christiansen P.L., Lomdahl P.S. Solitary waves on nonlinear elastic rods. I. // J. Acoust. Soc. Amer. 1984. V. 76. P. 871–879.
  8. Porubov I.V., Samsonov A.M., Velarde M.G., Bukhanovsky A.V. Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding // Phys.Rev. Ser. E. 1998. V. 58. P. 3854–3864.
  9. Lamb H. On waves in an elastic plate // Proc. Roy. Soc. 1917. V. A93. P. 114–128.
  10. Kuznetsov S.V. Subsonic Lamb waves in anisotropic plates // Quart. Appl. Math. 2002. V. 60. P. 577–587.
  11. Thomson W.T. Transmission of elastic waves through a stratified solid medium // J. Appl. Phys. 1950. V. 21. № 2. P. 89–93.
  12. Haskell N.A. Dispersion of surface waves on multilayered media // Bull. Seismol. Soc. America. 1953. V.43. № 1. P. 17–34.
  13. Knopoff L. A matrix method for elastic wave problems // Bull. Seismol. Soc. America. 1964. V.54. № 1. P. 431–438.
  14. Kuznetsov S.V. Fundamental and singular solutions of Lamé equations for media with arbitrary elastic anisotropy // Quart. Appl. Math. 2005. V. 63. P. 455–467.
  15. Goldstein R.V., Kuznetsov S.V. Long-wave asymptotics of Lamb waves // Mech. Solids. 2017. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
  16. Kuznetsov S.V. SH-waves in laminated plates // Quart. Appl. Math. 2006. V.64. № 1. P. 153–165.
  17. Meier C.D. Matrix Analysis and Applied Linear Algebra. SIAM: N.Y.,2002.
  18. Djeran-Maigre I. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X
  19. Ilyashenko A.V., Kuznetsov S.V. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
  20. Kravtsov A.V., Sekerzh-Zenkovich, S.Y. Finite element models in Lamb’s problem // Mech. Solids. 2011. V. 46. P. 952–959.
  21. Goldstein R.V., Dudchenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
  22. Li S., Brun, M., Djeran-Maigre I. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // European Journal of Environmental and Civil Engineering, 2020. V. 24. № 14. P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  23. Li S., Brun, M., Djeran-Maigre I. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Computers and Geotechnics. 2021. V. 131. Article 103808. https://doi.org/10.1080/19648189.2018.1506826
  24. Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russian Journal of Nondestructive Testing. 2017. V. 53. № 4. P. 243–259. https://doi.org/10.1134/S1061830917040039
  25. Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math. 2002. V. 60. P. 87–97. https://doi.org/10.1090/qam/1878260
  26. Dudchenko A.V., Dias D. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. V. 91. P. 257–276.
  27. Kolsky H. Stress waves in solids // J. Sound Vibr. 1964. V. 1. P. 88–110.
  28. Onoe M., McNiven H.D., Mindlin R.D. Dispersion of axially symmetric waves in elastic rods // Trans. ASME. J. Appl. Mech. 1962. V. 29. P. 729–734.
  29. Zemanek J. An experimental and theoretical investigation of elastic wave propagation in a cylinder // J. Acoust. Soc. Amer. 1972. V. 51. P. 265–283.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences