Кратковременная перинатальная гипоксия не оказывает влияния на функционирование артерий скелетных мышц у крыс во взрослом возрасте
- Авторы: Швецова А.А.1, Симоненко С.Д.1, Кабиольский И.А.1, Гайнуллина Д.К.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 111, № 9 (2025)
- Страницы: 1545-1557
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://stomuniver.ru/0869-8139/article/view/696702
- DOI: https://doi.org/10.7868/S2658655X25090082
- ID: 696702
Цитировать
Полный текст
Аннотация
Перинатальная гипоксия является одной из часто встречаемых патологий в раннем онтогенезе, что может оказывать программирующее влияние на функционирование сосудистой системы. Последнее было показано для легочных артерий, а также в единичных исследованиях на системных артериях. Однако отсутствуют данные об отставленном влиянии перинатальной гипоксии на функционирование гемодинамически значимого сосудистого региона скелетных мышц. В связи с этим целью данной работы стало исследование отставленных влияний однократной нормобарической гипоксии в раннем онтогенезе на функционирование артерий скелетных мышц во взрослом возрасте. В работе моделировали нормобарическую гипоксию (8% О2) в течение 2 ч у 2-дневных самцов крыс, после чего их доращивали до взрослого возраста (11–12 недель) и оценивали функциональную активность артерий икроножной мышцы, а также уровень систолического артериального давления. Сократительные ответы артерий икроножной мышцы на агонист α1-адренорецепторов, реакции эндотелий-зависимого расслабления артерий на ацетилхолин и эндотелий-независимого расслабления на донор NO не различались между группами “Гипоксия” и “Контроль”. Антиконстрикторное влияние NO и Са2+-активируемых калиевых каналов большой проводимости, а также проконстрикторное влияние Rho-киназы в артериях не были изменены у крыс, перенесших перинатальную гипоксию. Уровни систолического артериального давления не различались между группами. Таким образом, согласно представленным в данной работе результатам, кратковременная нормобарическая перинатальная гипоксия не приводит к отставленным изменениям в регуляции тонуса артерий икроножной мышцы и уровня артериального давления у крыс во взрослом возрасте.
Об авторах
А. А. Швецова
Московский государственный университет имени М.В. ЛомоносоваМосква, Россия
С. Д. Симоненко
Московский государственный университет имени М.В. ЛомоносоваМосква, Россия
И. А. Кабиольский
Московский государственный университет имени М.В. ЛомоносоваМосква, Россия
Д. К. Гайнуллина
Московский государственный университет имени М.В. Ломоносова
Email: Dina.Gaynullina@gmail.com
Москва, Россия
Список литературы
- Barker DJP (2002) Fetal programming of coronary heart disease. Trends Endocrinol Metab 13: 364–368. https://doi.org/10.1016/S1043-2760(02)00689-6
- Miranda JO, Ramalho C, Henriques-Coelho T, Areias JC (2017) Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail Rev 22: 861–877. https://doi.org/10.1007/s10741-017-9638-z
- Thornburg KL (2015) The programming of cardiovascular disease. J Dev Orig Health Dis 6: 366–376. https://doi.org/10.1017/S2040174415001300
- Moshiro R, Mdoe P, Perlman JM (2019) A Global View of Neonatal Asphyxia and Resuscitation. Front Pediatr 7: 489. https://doi.org/10.3389/fped.2019.00489
- Lawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, Lalli M, Bhutta Z, Barros AJD, Christian P, Mathers C, Cousens SN (2014) Every newborn: Progress, priorities, and potential beyond survival. Lancet 384: 189–205. https://doi.org/10.1016/S0140-6736(14)60496-7
- Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U (1999) Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet 353: 2205–2207. https://doi.org/10.1016/S0140-6736(98)08352-4
- Peyter AC, Muehlethaler V, Liaudet L, Marino M, Di Bernardo S, Diaceri G, Tolsa JF (2008) Muscarinic receptor M1 and phosphodiesterase 1 are key determinants in pulmonary vascular dysfunction following perinatal hypoxia in mice. Am J Physiol – Lung Cell Mol Physiol 295: 201–213. https://doi.org/10.1152/ajplung.00264.2007
- Jones RD, Morice AH, Emery CJ (2004) Effects of Perinatal Exposure to Hypoxia upon the Pulmonary Circulation of the Adult Rat. Physiol Res 53: 11–17. https://doi.org/10.33549/physiolres.930421
- Marino M, Bény JL, Peyter AC, Bychkov R, Diaceri G, Tolsa JF (2007) Perinatal hypoxia triggers alterations in K+ channels of adult pulmonary artery smooth muscle cells. Am J Physiol – Lung Cell Mol Physiol 293: 1171–1182. https://doi.org/10.1152/ajplung.00126.2007
- Marino M, Bény JL, Peyter AC, Diaceri G, Tolsa JF (2011) Perinatal hypoxia enhances cyclic adenosine monophosphate-mediated BK Ca channel activation in adult murine pulmonary artery. J Cardiovasc Pharmacol 57: 154–165. https://doi.org/10.1097/FJC.0b013e3182016adf
- Peyter AC, Delhaes F, Diaceri G, Menétrey S, Tolsa JF (2014) Perinatal nitric oxide therapy prevents adverse effects of perinatal hypoxia on the adult pulmonary circulation. Biomed Res Int 2014: 949361. https://doi.org/10.1155/2014/949361
- Liu B, Liu Y, Shi R, Feng X, Li X, Zhang W, Wu J, Li N, Zhou X, Sun M, Xu Z (2018) Chronic Prenatal Hypoxia Down-Regulated BK Channel Β1 Subunits in Mesenteric Artery Smooth Muscle Cells of the Offspring. Cell Physiol Biochem 45: 1603–1616. https://doi.org/10.1159/000487727
- Chen X, Qi L, Su H, He Y, Li N, Gao Q, Li H, Xu T, Lu L, Xu Z, Tang J (2020) Prenatal hypoxia attenuated contraction of offspring coronary artery associated with decreased PKCβ Ser660 phosphorylation and intracellular calcium. Life Sci 261: 118364. https://doi.org/10.1016/j.lfs.2020.118364
- Štulcová B (1977) Postnatal Development of Cardiac Output Distribution Measured by Radioactive Microspheres in Rats. Neonatology 32: 119–124. https://doi.org/10.1159/000241004
- Shimokawa H, Sunamura S, Satoh K (2016) RhoA/Rho-Kinase in the Cardiovascular System. Circ Res 118(2): 352–366. https://doi.org/10.1161/CIRCRESAHA.115.306532
- Тарасова ОС, Гайнуллина ДК (2017) Rho-киназа как ключевой участник регуляции тонуса сосудов в норме и при сосудистых расстройствах. Артер гипертен 23: 383–394. [Tarasova OS, Gainullina DK (2017) Rho-kinase as a key participant in the regulation of vascular tone in normal conditions and in vascular disorders. Arter Hyperten 23: 383–394. https://doi.org/10.18705/1607-419X-2017-23-5-383-394
- Gaynullina DK, Sofronova SI, Shvetsova AA, Selivanova EK, Sharova AP, Martyanov AA, Tarasova OS (2018) Antenatal/early postnatal hypothyroidism increases the contribution of Rho-kinase to contractile responses of mesenteric and skeletal muscle arteries in adult rats. Pediatr Res 84: 112–117. https://doi.org/10.1038/s41390-018-0029-5
- Ortiz M, Loidl F, Vázquez-Borsetti P (2022) Transition to extrauterine life and the modeling of perinatal asphyxia in rats. WIREs Mech Dis 14: 1–16. https://doi.org/10.1002/wsbm.1568
- Shateeva VS, Simonenko SD, Khlystova MA, Selivanova EK, Borzykh AA, Gaynullina DK, Shvetsova AA (2025) Perinatal hypoxia augments contractile impact of NADPH oxidase-derived ROS in early postnatal rat arteries. Pediatr Res 97(3): 1220–1261. https://doi.org/10.1038/s41390-024-03466-z
- Shvetsova AA, Khukhareva DD, Simonenko SD, Khlystova MA, Borzykh AA, Gaynullina DK (2024) Perinatal hypoxia weakens anticontractile influence of NO in rat arteries during early postnatal period. Pediatr Res 95(7): 1758–1763. https://doi.org/10.1038/s41390-024-03062-1
- Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26. https://doi.org/10.1161/01.RES.41.1.19
- Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175–191. https://doi.org/10.3758/bf03193146
- Tarasova O, Sjöblom-Widfeldt N, Nilsson H (2003) Transmitter characteristics of cutaneous, renal and skeletal muscle small arteries in the rat. Acta Physiol Scand 177: 157–166. https://doi.org/10.1046/J.1365-201X.2003.01057.X
Дополнительные файлы


