Mass-Spectra of New Heterocycles: XXIX. Study of 2-(Alkylsulfanyl)quinolines by Electron Ionization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The properties of a representative number of previously unknown 2-(alkylsulfanyl)quinolines, obtained from aryl isothiocyanates, allene or acetylene carbanions, and methyl iodide, upon electron ionization (70 eV) have been studied for the first time. All the studied compounds form a stable molecular ion, which is clearly detected in the mass spectra. All studied quinolines are characterized by common decay patterns, including the formation of [M – H]+, [M – Me]+, and [M – HS]+ ions. The main effect on fragmentation is exerted by the nature of substituents at positions 3 and 4 of the pyridine cycle of quinolines. The molecular ion of 4-methyl-2-(methylsulfanyl)-3-(1H-pyrrol-1-yl)quinolines electron ionization undergoes rearrangement, which occurs both with the participation of a sulfur atom and with the participation of a carbon atom of the methyl group in the 4 position of the heterocycle. Ways of fragmentation of the formed ions of the studied 2-(alkylsulfanyl)quinolines are proposed based on the analysis of the mass spectra of daughter ions.

作者简介

L. Klyba

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0002-5521-3201
Irkutsk, Russia

E. Sanzheeva

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-9776-2794
Irkutsk, Russia

N. Nedolya

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-2614-7265
Irkutsk, Russia

O. Tarasova

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-4895-3217
Irkutsk, Russia

参考

  1. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2024, 60, doi: 10.1134/S1070428024120108
  2. Garrido M.A. Quinoline and isoquinolines, In: Heterocycles In Natural Product Synthesis, Eds. Majumdar K.C., Chattopadhyay S.K., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 299–339.
  3. Michael J.P. Nat. Prod. Rep. 2005, 22, 627–646. doi: 10.1039/B413750G
  4. Chung P.-Y., Bian Z.-X., Pun H.-Y., Chan D., Chan A.S.-C., Chui C.-H., Tang J.C.-O., Lam K.-H. Future Med. Chem. 2015, 7, 947–967. doi: 10.4155/FMC.15.34
  5. Kumar S., Bawa S., Gupta H. Mini Rev. Med. Chem. 2009, 9, 1648–1654. doi: 10.2174/138955709791012247
  6. Pathak D., Singh D. Int. J. Pharmaceut. Sci. Res. 2016, 7, 1–13. doi: 10.13040/IJPSR.0975-8232.7(1).1-13
  7. Abdanne W., Endale M. RSC Adv. 2020, 10, 20784–20793. doi: 10.1039/D0RA0 37631
  8. Solomon V.R., Lee H. Curr. Med. Chem. 2011, 18, 1488–1508. doi: 10.2174/092986711795328382
  9. Afzal O., Kumar S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. Eur. J. Med. Chem. 2015, 97, 871–910. doi: 10.1016/j.ejmech.2014.07.044
  10. Liu B., Li F., Zhou T., Tang X.-Q., Hu G.-W. J. Heterocycl. Chem. 2018, 55, 1863–1873. doi: 10.1002/jhet.3241
  11. Da T.T., Hai L.T.H., Meervelt L.V., Nguyen H.D. J. Coord. Chem. 2015, 68, 3525–3536. doi: 10.1080/00958972.2015.1068936
  12. Rogovoy M.I., Frolova T.S., Samsonenko D.G., Berezin A.S., Bagryanskaya I.Yu., Nedolya N.A., Tarasova O.A., Fedin V.P., Artem'ev A.V. Eur. J. Inorg. Chem. 2020, 1635–1644. doi: 10.1002/cjic.202000109
  13. Herchi R., Waser M. Tetrahedron 2014, 70, 1935–1960. doi: 10.1016/j.tet.2014.01.050
  14. Slodek A., Filapek M., Szafraniec G., Grudzka I., Pisarski W.A., Malecki J.G., Zur L., Grela M., Danikiewicz W., Krompiec S. Eur. J. Org. Chem. 2014, 2014, 5256–5264. doi: 10.1002/cjoc.201402241
  15. Manthou V.S., Pergani D., Rotas G., Falaras P., Vougloukalakis G.C. Synlett. 2017, 28, 929–933. doi: 10.1055/s-0036-1588702
  16. Kouznetsov V.V., Mendez L.Y., Gomez C.M. Curr. Org. Chem. 2005, 9, 141–161. doi: 10.2174/1385272053369196
  17. Madapa S., Tsui Z., Batra S. Curr. Org. Chem. 2008, 12, 1116–1183. doi: 10.2174/138527208785740300
  18. Nedolya N.A., Tarasova O.A., Artem'ev A.V., Albanov A.I., Bagryanskaya I.Yu., Trofimov B.A. Eur. J. Org. Chem. 2024, 27, e202400033. doi: 10.1002/cjoc.202400033
  19. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р. ЖОрХ. 2009, 45, 301–312. doi: 10.1134/S1070428009020237
  20. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р., Волостных О.Г. ЖОрХ, 2009, 45, 610–621. doi: 10.1134/S1070428009040216
  21. Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ, 2014, 50, 43–51. doi: 10.1134/S1070428014010072
  22. Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ, 2015, 51, 558–568. doi: 10.1134/S1070428015040144
  23. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ, 2023, 59, 895–903. doi: 10.1134/S1070428023070035

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025