Mass-Spectra of New Heterocycles: XXIX. Study of 2-(Alkylsulfanyl)quinolines by Electron Ionization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The properties of a representative number of previously unknown 2-(alkylsulfanyl)quinolines, obtained from aryl isothiocyanates, allene or acetylene carbanions, and methyl iodide, upon electron ionization (70 eV) have been studied for the first time. All the studied compounds form a stable molecular ion, which is clearly detected in the mass spectra. All studied quinolines are characterized by common decay patterns, including the formation of [M – H]+, [M – Me]+, and [M – HS]+ ions. The main effect on fragmentation is exerted by the nature of substituents at positions 3 and 4 of the pyridine cycle of quinolines. The molecular ion of 4-methyl-2-(methylsulfanyl)-3-(1H-pyrrol-1-yl)quinolines electron ionization undergoes rearrangement, which occurs both with the participation of a sulfur atom and with the participation of a carbon atom of the methyl group in the 4 position of the heterocycle. Ways of fragmentation of the formed ions of the studied 2-(alkylsulfanyl)quinolines are proposed based on the analysis of the mass spectra of daughter ions.

About the authors

L. V Klyba

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: klyba@irioch.irk.ru
ORCID iD: 0000-0002-5521-3201
Irkutsk, Russia

E. R Sanzheeva

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0002-9776-2794
Irkutsk, Russia

N. A Nedolya

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-2614-7265
Irkutsk, Russia

O. A Tarasova

A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-4895-3217
Irkutsk, Russia

References

  1. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2024, 60, doi: 10.1134/S1070428024120108
  2. Garrido M.A. Quinoline and isoquinolines, In: Heterocycles In Natural Product Synthesis, Eds. Majumdar K.C., Chattopadhyay S.K., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 299–339.
  3. Michael J.P. Nat. Prod. Rep. 2005, 22, 627–646. doi: 10.1039/B413750G
  4. Chung P.-Y., Bian Z.-X., Pun H.-Y., Chan D., Chan A.S.-C., Chui C.-H., Tang J.C.-O., Lam K.-H. Future Med. Chem. 2015, 7, 947–967. doi: 10.4155/FMC.15.34
  5. Kumar S., Bawa S., Gupta H. Mini Rev. Med. Chem. 2009, 9, 1648–1654. doi: 10.2174/138955709791012247
  6. Pathak D., Singh D. Int. J. Pharmaceut. Sci. Res. 2016, 7, 1–13. doi: 10.13040/IJPSR.0975-8232.7(1).1-13
  7. Abdanne W., Endale M. RSC Adv. 2020, 10, 20784–20793. doi: 10.1039/D0RA0 37631
  8. Solomon V.R., Lee H. Curr. Med. Chem. 2011, 18, 1488–1508. doi: 10.2174/092986711795328382
  9. Afzal O., Kumar S., Haider M.R., Ali M.R., Kumar R., Jaggi M., Bawa S. Eur. J. Med. Chem. 2015, 97, 871–910. doi: 10.1016/j.ejmech.2014.07.044
  10. Liu B., Li F., Zhou T., Tang X.-Q., Hu G.-W. J. Heterocycl. Chem. 2018, 55, 1863–1873. doi: 10.1002/jhet.3241
  11. Da T.T., Hai L.T.H., Meervelt L.V., Nguyen H.D. J. Coord. Chem. 2015, 68, 3525–3536. doi: 10.1080/00958972.2015.1068936
  12. Rogovoy M.I., Frolova T.S., Samsonenko D.G., Berezin A.S., Bagryanskaya I.Yu., Nedolya N.A., Tarasova O.A., Fedin V.P., Artem'ev A.V. Eur. J. Inorg. Chem. 2020, 1635–1644. doi: 10.1002/cjic.202000109
  13. Herchi R., Waser M. Tetrahedron 2014, 70, 1935–1960. doi: 10.1016/j.tet.2014.01.050
  14. Slodek A., Filapek M., Szafraniec G., Grudzka I., Pisarski W.A., Malecki J.G., Zur L., Grela M., Danikiewicz W., Krompiec S. Eur. J. Org. Chem. 2014, 2014, 5256–5264. doi: 10.1002/cjoc.201402241
  15. Manthou V.S., Pergani D., Rotas G., Falaras P., Vougloukalakis G.C. Synlett. 2017, 28, 929–933. doi: 10.1055/s-0036-1588702
  16. Kouznetsov V.V., Mendez L.Y., Gomez C.M. Curr. Org. Chem. 2005, 9, 141–161. doi: 10.2174/1385272053369196
  17. Madapa S., Tsui Z., Batra S. Curr. Org. Chem. 2008, 12, 1116–1183. doi: 10.2174/138527208785740300
  18. Nedolya N.A., Tarasova O.A., Artem'ev A.V., Albanov A.I., Bagryanskaya I.Yu., Trofimov B.A. Eur. J. Org. Chem. 2024, 27, e202400033. doi: 10.1002/cjoc.202400033
  19. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р. ЖОрХ. 2009, 45, 301–312. doi: 10.1134/S1070428009020237
  20. Клыба Л.В., Недоля Н.А., Тарасова О.А., Жанчипова Е.Р., Волостных О.Г. ЖОрХ, 2009, 45, 610–621. doi: 10.1134/S1070428009040216
  21. Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ, 2014, 50, 43–51. doi: 10.1134/S1070428014010072
  22. Клыба Л.В., Недоля Н.А., Тарасова О.А., Санжеева Е.Р. ЖОрХ, 2015, 51, 558–568. doi: 10.1134/S1070428015040144
  23. Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ, 2023, 59, 895–903. doi: 10.1134/S1070428023070035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences