One-Pot Synthesis of 3,4-Dihydropyrimidino[2,1-a]isoindol-6(2H)-one

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

One-pot synthesis of 3,4-dihydropyrimidino[2,1-a]isoindol-6(2H)-one, an analog of the promising anti-cancer drug batracilin, has been developed. Both acylation of 1,3-diaminopropane with phthalic anhydride and followed by cyclocondensation took place while heating in toluene or ortho-xylene. The highest yield 76% of the target isoindolone was obtained by adding 1,3-diaminopropane to phthalic anhydride in toluene, while reverse order of mixing the reagents, decreases the yield to 60%. The reaction proceeds stepwise, through the formation of 2-(3-aminopropyl)carbamoyl)benzoic acid, which is converted to isoindolone upon heating with 68% yield.

Sobre autores

G. Martyanov

Postovsky Institute of Organic Synthesis UB RAS

ORCID ID: 0000-0002-5850-8443
Ekaterinburg, Russia

M. Barabanov

Postovsky Institute of Organic Synthesis UB RAS

Email: filmsey@mail.ru
ORCID ID: 0009-0000-1152-0317
Ekaterinburg, Russia

A. Pestov

Postovsky Institute of Organic Synthesis UB RAS

ORCID ID: 0000-0002-4270-3041
Ekaterinburg, Russia

Bibliografia

  1. Ettlinger M., Hodgkins J. J. Am. Chem. Soc., 1955, 77, 1831–1836. doi: 10.1021/ja01612a035
  2. Beaton G., Moree W.J., Rueter J.K., Dahl R.S., Meelligott D.L., Goldman P., Demaggio A.J., Christenson E., Herendeen D., Fowler K.W., Huang D., Bertino J.A., Bourdon L.H., Fairfax D.J., Jiang Q., Reisch H.A., Song R.H., Zhichkin P.E. WO 2003 015785 (2003). Cd, 2003, 138, 205069.
  3. Iwata M., Kuzuhara H. Bull. Chem. Soc. Jpn., 1989, 62, 198–210. doi: 10.1246/bcsj.62.198
  4. Houlihan W.J., Kelly L., Pankuch J., Koletar J., Brand L., Janowsky A., Kopajic T.A. J. Med. Chem., 2002, 45, 4097–4109. doi: 10.1021/jm010302r
  5. Ravu R.R., Jacob M.R., Khan S.I., Wang M., Cao L., Agarwal A.K., Clarek A. M., Li X.-C. J. Nat. Prod., 2021, 84, 2129–2199. doi: 10.1021/acs.jnatprod.1c00116
  6. Plowman J., Pauli K., Atassi G., Harrison S., Dykes D., Kabbe H., Narayanan V.L., Yoder O. Invest. New Drugs, 1988, 6, 147–153. doi: 10.1007/BF00175391
  7. Rao V.A., Agama K., Holbeck S., Pommiert Y. Cancer Res., 2007, 20, 9971–9979. doi: 10.1158/0008-5472.CAN-07-0804
  8. Martyanov G.S., Barabanov M.A., Pestov A.V. XIII Int. Conf. Chem. Young Sci. "Mendeleev 2024", St. Petersburg: VVM Publishing LLC, 2024, 473. https://drive.google.com/file/d/1DyY-C1-Dop22VZNWDAMRNQG_e38a3HUL/view
  9. Tequi P., Peano A., Decuupere M., Gibbs A., Kleijwegt P., Muhla S., Le Deore C., Yifru A. WO 2022 259193 (2022). Cd, 2022, 181, 91453.
  10. Nakamura A., Takamoto K. Pat. 4130075 (2008). Japan. Cd, 2008, 139, 53036.
  11. Eguchi S., Takeuchi H. J. Chem. Soc., Chem. Commun., 1989, 9, 602–603. doi: 10.1039/C39890000602
  12. Gaozza C.H., Grinberg H., Lamdan S. J. Heterocycl. Chem., 1972, 9, 883–886. doi: 10.1002/jhet.5570090422
  13. Spiessens L. I., Anteunis M. J. O. Bull. Soc. Chim. Belg., 1983, 92, 965–993. doi: 10.1002/bscb.19830921107
  14. Veznik F., Guggisberg A., Hesse M. Helv. Chim. Acta, 1991, 74, 654–661. doi: 10.1002/hlca.19910740322
  15. Kraus M.A. Synthesis, 1973, 6, 361–362. doi: 10.1055/s-1973-22217
  16. Atkins P.W., de Paula J. Phys. Chem. Life Sci., 3rd ed., Oxford Univ. Press, Oxford, 2006. doi: 10.1093/hessc/9780198830108.001.0001
  17. Sulkowski T.S. Pat. 3507867 (1968). USA. C4, 1968, 74, 757774.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025