Synthesis and Detection Properties of New Linear and Macrocyclic Derivatives of O,O'-Aminobenzylbinols

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A series of O-halobenzyl and O,O’-di(halobenzyl) derivatives of (S)-1,1’-bi(2-naphthol) (BINOL) was synthesized and their catalytic amination using both palladium and copper catalysts was studied. As a result, a new family of BINOLs was obtained which contain various substituents at oxygen atoms with macrocyclic or linear structure, including those with additional chiral centers. The ability of the obtained compounds for detecting metal cations and enantiomers of model amino alcohols was studied by UV and fluorescence titration methods. A potential fluorescent sensor for Al3+ cations was found in a series of linear derivatives due to a multiple increase in the emission; a fluorescent molecular probe for Hg2+ and Al3+ cations was also proposed. Among macrocyclic derivatives, the compound with the longest trioxadiamine linker can be used as a molecular probe for Mg2+ and Ca2+ cations due to the enhancement of fluorescence with a bathofloral shift of the maximum, as well as for Al3+ and Hg2+ cations due to a strong enhancement of fluorescence without changing the position of the emission maximum.

全文:

受限制的访问

作者简介

Anatoly Sergeev

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: beletska@org.chem.msu.ru
俄罗斯联邦, 1/3, Leninskie Gory, Moscow, 119991

Alexey Yakushev

Lomonosov Moscow State University

Email: beletska@org.chem.msu.ru
ORCID iD: 0000-0001-7807-9546
俄罗斯联邦, 1/3, Leninskie Gory, Moscow, 119991

Anna Malysheva

Lomonosov Moscow State University

Email: beletska@org.chem.msu.ru
俄罗斯联邦, 1/3, Leninskie Gory, Moscow, 119991

Alexey Averin

Lomonosov Moscow State University

Email: beletska@org.chem.msu.ru
ORCID iD: 0000-0001-6757-8868
俄罗斯联邦, 1/3, Leninskie Gory, Moscow, 119991

Irina Beletskaya

Lomonosov Moscow State University

Email: beletska@org.chem.msu.ru
ORCID iD: 0000-0001-9705-1434
俄罗斯联邦, 1/3, Leninskie Gory, Moscow, 119991

参考

  1. Wang X., Jiang Y., Chen Y., Yu Sh., Shi D., Zhao F., Chen Yu, Wang Y., Huo B., Yu X., Pu L., J. Org. Chem. 2020, 85 (7), 4901–4905. doi: 10.1021/acs.joc.0c00064
  2. Munusamy S., Kulathu Iyer S., Tetrahedron: Asymmetry. 2016, 27 (11–12), 492–497. doi: 10.1016/j.tetasy.2016.05.002
  3. Wang Y., Tian J., Zhao F., Chen Y., Huo B., Yu S., Yu X., Pu L., Tetrahedron Lett. 2021, 66, 152803. doi: 10.1016/j.tetlet.2020.152803
  4. Zhang K., Wu S., Qu D., Wang L., Tetrahedron Lett. 2016, 57 (10), 1133–1137. doi: 10.1016/j.tetlet.2016.01.101
  5. Munusamy S., Muralidharan V.P., Iyer S.K., Sensors Actuators. 2017, 250, 244–249. doi: 10.1016/j.snb.2017.04.169
  6. Zhou Y., Cao Y., Gong G., Zhang Y., Zhao H., Gao X., Zhao G., Inorg. Chem. Commun. 2018, 96, 170–174. doi: 10.1016/j.inoche.2018.08.012
  7. Zhao F., Wang Y., Wu X., Yu S., Yu X., Pu L., Chem. Europ. J. 2020, 26, 7258–7262. doi: 10.1002/chem.202000423
  8. Nian S., Pu L., J. Org. Chem. 2019, 84 (2), 909–913. doi: 10.1021/acs.joc.8b02793
  9. Yang H., Xiang K., Li Y., Li S., Xu C., J. Organometall. Chem. 2016, 801, 96–100. doi: 10.1016/j.jorganchem.2015.10.017
  10. Tyszka A., Pikus G., Dąbrowa K., Jurczak J., J. Org. Chem. 2019, 84 (10), 6502–6507. doi: 10.1021/acs.joc.9b00630
  11. Wang Y., Liu X., Li H., Liu X., Wang L., Liu Y., Chinese J. Chem. 2022, 40, 2393–2399. doi: 10.1002/cjoc.202200243
  12. Zhu Y.-Y., Wu X.-D., Gu S.-X., Pu L., J. Am. Chem. Soc. 2019, 141, 175–181. doi: 10.1021/jacs.8b07803
  13. Xu X., Trindle C.O., Zhang G., Pu L., Chem. Commun. 2015, 51, 8469–8462. doi: 10.1039/C5CC02457A
  14. Lu K., Guo H., Jiang Y., Yang J., Yu S., Yu X., Pu L., ChemPlusChem. 2023, 88 (3), e202300036. doi: 10.1002/cplu.202300036
  15. Shaferov A.V., Malysheva A.S., Averin A.D., Maloshitskaya O.A., Beletskaya I.P., Sensors. 2020, 20 (11), 32–34. doi: 10.3390/s20113234
  16. Averin A.D., Grigorova O.K., Malysheva A.S., Shafe-rov A.V., Beletskaya I.P., Pure Appl. Chem. 2020, 92, 1367–1386. | doi: 10.1515/pac-2020-0205
  17. Iwanek W., Mattay J., J. Photochem. Photobiol., A. 1992, 67, 209–226. doi: 10.1016/1010-6030(92)85230-R
  18. Beletskaya I.P., Averin A.D., Russ. Chem. Rev. 2021, 90, 1359–1396. doi: 10.1070/RCR4999
  19. Averin A.D., Panchenko S.P., Abel A.S., Maloshitskaya O.A., Butov G.M., Savelyev E.N., Orlinson B.S., Novakov I.A., Beletskaya I.P., Russ. J. Org. Chem. 2017, 53, 1788–1798. doi: 10.1134/S1070428017120028
  20. Mao Y., Liu Y., Hu Y., Wang L., Zhang S., Wang W., ACS Catalysis. 2018, 8, 3016–3020. doi: 10.1021/acscatal.8b00185
  21. Shaferov A.V., Malysheva A.S., Averin A.D., Grigorova O.K., Buryak A.K., Beletskaya I.P., Russ. Chem. Bull. 2020, 69, 1366–1377. doi: 10.1007/s11172-020-2911-7
  22. Malysheva A.S., Shaferov A.V., Averin A.D., Grigorova O.K., Maloshitskaya O.A., Roznyatovsky V.A., Beletskaya I.P., Russ. Chem. Bull. 2020, 69, 1355–1365. doi: 10.1007/s11172-020-2910-8
  23. Grigorova O.K., Averin A.D., Maloshitskaya O.A., Beletskaya I.P., Macroheterocycles. 2017, 10, 446–453. doi: 10.6060/mhc170937a
  24. Ukai T., Kawazura H., Ishii Y., Bonnet J.J., Ibers J.A., J. Organometall. Chem. 1974, 65, 253–266. doi: 10.1016/S0022-328X(00)91277-4

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1

下载 (271KB)
3. Scheme 2

下载 (185KB)
4. Scheme 3

下载 (174KB)
5. Scheme 4

下载 (171KB)
6. Scheme 5

下载 (170KB)
7. Scheme 6

下载 (151KB)
8. Scheme 7

下载 (268KB)
9. Fig. 1. Change in fluorescence spectra of compounds 9a (CL = 8.5 · 10–6 M, λex = 294 nm) (a), 9b (CL = 16.7 · 10–6 M, λex = 293 nm) (b), 9c (CL = 11.7 · 10–6, λex = 292 nm) (c) and 10b (CL = 16.5 · 10–6 M, λex = 293 nm) (d) in the presence of metal salts (5 equiv.).

下载 (896KB)
10. Fig. 2. Change in the fluorescence spectra of macrocycles 13a (CL = 9.3 · 10–6 M, λex = 294 nm) (a), 13c (CL = 13.0 · 10–6 M, λex = 294 nm) (b), 13d (CL = 14.1 · 10–6 M, λex = 294 nm) (c) and 13e (CL = 10.7 · 10–6 M, λex = 292 nm) (d) in the presence of metal salts (5 equiv.).

下载 (939KB)

版权所有 © Russian Academy of Sciences, 2025