Properties of palladium-phosphorus catalysts supported on HZSM-5 zeolite in the direct synthesis of hydrogen peroxide

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The properties of Pd/HZSM-5 and Pd–nP/HZSM-5 catalysts in direct synthesis and side processes of decomposition and hydrogenation of H2O2 under mild conditions in ethanol and aqueous-ethanol medium in the presence of an acid inhibitor were studied. Using HR-TEM, XRD and ICP MS methods, it was shown that as a result of modification with phosphorus, X-ray amorphous highly dispersed systems are formed, which represent structurally disordered solid solutions of phosphorus in palladium. The main reasons for the promoting effect of phosphorus on the yield of H2O2 are considered. It has been established that, along with phosphorus and acid modifiers, the use of a zeolite support in the H-form favors the inhibition of the side process of H2O2 decomposition.

全文:

受限制的访问

作者简介

L. Belykh

Irkutsk State University

编辑信件的主要联系方式.
Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

N. Skripov

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

E. Milenkaya

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

T. Kornaukhova

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

T. Sterenchuk

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

Yu. Stepanova

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

F. Schmidt

Irkutsk State University

Email: belykh@chem.isu.ru
俄罗斯联邦, K. Marx, 1, Irkutsk, 664003

参考

  1. Brehm J., Lewis R.J., Morgan D.J., Davies T.E., Hutchings G.J. // Catal. Lett. 2022. V. 152. P. 254.
  2. Menegazzo F., Signoretto M., Ghedini E., Strukul G. // Catalysts. 2019. V. 9. № 3. P. 251.
  3. Blanco-Brieva G., Desmedt F., Miquel P., Campos-Martin J.M., Fierro J.L.G. // Catalysts. 2022. V. 12. P. 796.
  4. Ranganathan S., Sieber V. // Catalysts. 2018. V. 8. № 9. P. 379.
  5. Мухортова Л.И., Ефимов Ю.Т., Глушков И.В., Константинова. Т.Г. Химия и технология пероксида водорода: учебное пособие. Чебоксары: Изд-во Чуваш. ун-та, 2020. 104 с.
  6. Liang J., Wang F., Li W., Zhang J., Guo C.-L. // Mol. Catal. 2022. V. 524. 112264.
  7. Lewis R.J., Koy M., Macino M., Das M., Carter J.H., Morgan D.J., Davies T.E., Ernst J.B., Freakley S.J., Glorius F., Hutchings G.J. // J. Am. Chem. Soc. 2022. V. 144. P. 15431.
  8. Campos-Martin J.M., Blanco-Brieva G., Fierro G. // Angew. Chem. Int. Ed. 2006. V. 45. № 42. P. 6962.
  9. Lewis J., Hutchings G.J. // ChemCatChem. 2019. V. 11. P. 298.
  10. Gemo B.N., Salmi T., Biasi P. // React. Chem. Eng. 2016. V. 1. P. 300.
  11. Barnes A., Lewis R.J., Morgan D.J., Davies T.E., Hutchings G.J. // Catal. Sci. Technol. 2022. V. 12. P. 1986.
  12. Han G.-H., Lee S.-H., Hwang S.-Y., Lee K.-Y. // Adv. Energy Mater. 2021. 2003121.
  13. Liu Y., McCue A.J., Li D. // ACS Catal. 2021. V. 11. P. 9102.
  14. Ван Я., Нуждин А.Л., Шаманаев И.В., Бухтиярова Г.А. // Кинетика и катализ. 2022. Т. 63. № 6. С. 743.
  15. Журенок А.В., Марковская Д.В., Потапенко К.О., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2022. Т. 63. № 3. С. 294.
  16. Belykh L.B., Skripov N.I., Sterenchuk T.P., Milenkaya E.A., Kornaukhova T.A., Schmidt F.K. // Appl. Catal. A: Gen. 2023. V. 664. 119330.
  17. Белых Л.Б., Скрипов Н.И., Стеренчук Т.П., Акимов В.В., Таусон В.Л., Лихацкий М.Н., Миленькая Е.А., Корнаухова Т.А., Шмидт Ф.К. // Кинетика и катализ. 2023. T. 64. № 6. C. 749. (Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V.V., Tauson V.L., Likhatski M.N., Milenkaya E.A., Kornaukhova T.A., Schmidt F.K. // Kinet. Catal.2023. V. 64. No. 6. P. 804.)
  18. Гордон А., Форд Р. Спутник химика. Москва: Мир, 1976. 572 с. (Gordon A.J., Ford R.A. The Chemist’s Companion. New-York: Wiley & Sons, 1972.)
  19. Armarego W.L.F., Christina L.L.C. Purification of laboratory chemicals. 6th Еdition. Elsevier, 2009. 760 р.
  20. Matthews J.C., Nashua N.H., Wood L.L. USA Patent 3,474,464, 1969.
  21. Sandri F., Danieli M., Zecca M., Centomo P. // ChemCatChem. 2021. V. 13. P. 2653.
  22. Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Уманец В.А., Шмидт Ф.К. // Кинетика и катализ. 2010. Т. 51. № 1. С. 47. (Belykh L.B., Skripov N.I., Belonogova, L.N., Umanets, V.A., Schmidt F.K. // Kinet. Catal. 2010. V. 51. No. 1. P. 42.)
  23. Скрипов Н.И., Белых Л.Б., Белоногова Л.Н., Уманец В.А., Рыжкович Е.Н., Шмидт Ф.К. // Кинетика и катализ. 2010. Т. 51. № 5. С. 739. (Skripov N.I., Belykh L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich E.N., Schmidt F.K. // Kinet. Catal. 2010. V. 51. No. 5. P. 714.)
  24. Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Рохин А.В., Шмидт Ф.К. // ЖОХ. 2009. Т. 79. № 1. С. 94. (Belykh L.B., Skripov N.I., Belonogova, L.N., Rokhin A.V., Schmidt F.K. // Russ. J. Gen. Chem. 2009. V. 79. No. 1. P. 92.)
  25. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. № 3. С. 248. (Nikolaev S.A., Zanaveskin L.N., Smirnov V.V., Averyanov V.A., Zanaveskin K.L. // Russ. Chem. Rev. 2009. V. 78. P. 231.)
  26. Белых Л.Б., Стеренчук Т.П., Скрипов Н.И., Акимов В.В., Таусон В.Л., Романченко А.С., Гвоздовская К.Л., Санжиева С.Б., Шмидт Ф.К. // Кинетика и катализ. 2019. Т. 60. № 6. С. 788. (Belykh L.B., Sterenchuk T.P., Skripov N.I., Akimov V.V., Tauson V.L., Romanchenko A.S., Gvozdovskaya K.L., Sanzhieva S.B., Shmidt F.K. // Kinet. Catal. 2019. V. 60. No. 6. P. 808.)
  27. Белых Л.Б., Скрипов Н.И., Стеренчук Т.П., Акимов В.В., Таусон В.Л., Шмидт Ф.К. // ЖОХ. 2016. Т. 86. № 9. С. 1454. (Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V.V., Tauson V.L., Schmidt F.K. // Russ. J. Gen. Chem. 2016. V. 86. No. 9. P. 2022.)
  28. Shi Y., Elnabawy A.O., Gilroy K.D., Hood Z.D., Chen R., Wang C., Mavrikakis M., Xia Y. // ChemCatChem. 2022. V. 14. № 16. e202200475.
  29. Cao K., Yang H., Bai S., Xu Y., Yang C., Wu Y., Xie M., Cheng T., Shao Q., Huang X. // ACS Catal. 2021. V. 11. P. 1106.
  30. Jeong H.E., Kim S., Seo M.-G., Lee D.-W., Lee K.-Y. // J. Mol. Catal. A: Chem. 2016. V. 420. P. 88.
  31. Wilson N.M., Flaherty D.W. // J. Am. Chem. Soc. 2016. V. 138. P. 574.
  32. Tian P., Ouyang L., Xu X., Ao C., Xu X., Si R., Shen X., Lin M., Xu J., Han Y.-F. // J. Catal. 2017. V. 349. P. 30.
  33. Chen L., Medlin J.W., Gronbeck H. // ACS Catal. 2021. V. 11. P. 2735.
  34. Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V.V., Tauson V.L., Milenkaya E.A., Schmidt F.K. // Eur. J. Inorg. Chem. 2021. V. 44. P. 4586.
  35. Clausen B.S., Topsoe H., Frahm R. // Adv. Catal. 1998. V. 42. P. 315.
  36. Deschner B.J., Doronkin D.E., Sheppard T.L., Zimina A., Grunwaldt A., Dittmeyer R. // J. Phys. Chem. C. 2021. V. 125. P. 3451.
  37. Flanagan B.T.B., Biehl G.E., Clewley J.D., Kundqvist S., Anderson Y. // J.C.S. Faraday I. 1980. V. 76. P. 196.
  38. Белых Л.Б., Скрипов Н.И, Акимов В.В., Таусон В.Л., Степанова Т.П., Шмидт Ф.К. // ЖОХ. 2013. Т. 83. № 12. С. 1974. (Belykh L.B., Skripov N.I., Akimov V.V., Tauson V.L., Stepanova T.P., Schmidt F.K. // Russ. J. Gen. Chem. 2013. V. 83. No. 12. P. 2260.)
  39. Ott L.S., Finke R.G. // Coord. Chem. Rev. 2007. V. 251. P. 1075.
  40. Han G.-H., Lee S.-H., Hwang S.-Y., Lee K.-Y. // Adv. Energy Mater. 2021. 2003121.
  41. Hu B., Deng W., Li R., Zhang Q., Wang Y., Delplanque-Janssens F., Paul F., Desmedt F., Miquel P. // J. Catal. 2014. V. 319. P. 15.
  42. Zhang J., Shao Q., Zhang Y., Bai S., Feng Y., Huang X. // Small. 2018. V. 14. 1703990.
  43. Liang W., Fu J., Chen H., Zhang X., Deng G. // Mater. Lett. 2021. V. 283. 128857.
  44. Richards T., Lewis R.J., Morgan D.J., Hutchings G.J. // Catal. Lett. 2023. V. 153. P. 32.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Kinetic curves of H2O2 accumulation (a), change in H2O2 selectivity (b) and H2 conversion (c) under mild conditions in the presence of Pd–1.0P/НZSM-5(toluene) (1), Pd–0.3P/НZSM-5(DMF) (2), Pd–0.3P/НZSM-5(toluene) (3), Pd/НZSM-5(toluene) (4), Pd/НZSM-5(DMF) (5) catalysts. Process conditions: ν(Pd) = 5 × 10–6 mol, T = 10°C, P = 1 atm, solvent – ​​ethanol (50 ml). Selectivity in the presence of Pd/НZSM-5(DMF) catalyst was not calculated due to low hydrogen conversion.

下载 (305KB)
3. Fig. 2. Activities of Pd and Pd–P catalysts (a) and turnover frequencies of H2O2 accumulation (b) in direct synthesis under mild conditions in ethanol (green) and in the presence of HCl solution (red).

下载 (405KB)
4. Fig. 3. PEM images of Pd/HZSM-5(toluene) catalysts (a), Pd–0.3P/HZSM-5(toluene) (b), Pd–1.0P/HZSM-5(toluene) (c), Pd– 0.3P/HZSM-5(DMFA) (d) and Pd–0.3P/HZSM-5(DMFA) (e).

下载 (726KB)
5. Fig. 4. High-resolution PEM images of Pd–0.3P/HZSM5(toluene) (a), Pd–1.0P/HZSM-5(toluene) (b), Pd–0.3P/HZSM-5(DMFA) (c) catalysts .

下载 (1MB)
6. Fig. 5. Kinetic curves of H2O2 accumulation (a), change in H2O2 selectivity (b) and H2 conversion (c) under mild conditions in the presence of Pd–1.0P/НZSM-5(toluene) (1), Pd–0.3P/НZSM-5(toluene) (2), Pd–0.3P/НZSM-5(DMF) (3), Pd/НZSM-5(toluene) (4), Pd/НZSM-5(DMF) (5) catalysts. Process conditions: ν(Pd) = 5 × 10–6 mol, T = 10°C, P = 1 atm, solvent – ​​ethanol (40 ml) : HCl solution (10 ml). Selectivity in the presence of Pd/НZSM-5(DMF) catalyst was not calculated due to low hydrogen conversion.

下载 (294KB)