Kinetics of chemical reactions in spray

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The number of observations demonstrating a significant effect of droplet sizes on the kinetics of chemical processes has increased with the expansion of the scope of application of spray technology. The equations linking the concentrations of reagents, the volume of droplets, the initial composition of the solution, the composition of the gas medium and the speed of processes are formulated within the framework of formal chemical kinetics. Using the example of second-order reactions (coupling, exchange, condensation, polymerization, polycondensation), it is shown that size kinetic effects occur when chemical processes are accompanied by changes in the droplet sizes in equilibrium with the gas medium. The results of computer simulation of condensation reaction and polycondensation process reproducing size effects are presented. Kinetic curves obtained by modeling the polycondensation process are compared with experimental data.

Texto integral

Acesso é fechado

Sobre autores

V. Fedoseev

G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vbfedoseev@yandex.ru
Rússia, 49 Tropinina str., Nizhny Novgorod, 603137

Е. Fedoseeva

Lobachevsky State University of Nizhny Novgorod

Email: vbfedoseev@yandex.ru
Rússia, 23, prosp. Gagarina, Nizhny Novgorod, 603022

Bibliografia

  1. Leng J., Wang Z., Wang J., Wu H.H., Yan G., Li X., Guo H., Liu Y., Zhang Q., Guo Z. // Chem. Soc. Rev. Royal Society of Chemistry. 2019. V. 48. № 11. P. 3015. https://doi.org/10.1039/c8cs00904j
  2. Łatka L., Pawłowski L., Winnicki M., Sokołowski P., Małachowska A., Kozerski S. // Appl. Sci. 2020. V. 10. № 15. https://doi.org/10.3390/app10155153
  3. Raula J., Eerikäinen H., Lähde A., Kauppinen E.I. // Nanoparticulate Drug Delivery System. 2007. № 7. P. 111. https://doi.org/10.1201/9781420008449-8
  4. Bernard F., Fedioun I., Peyroux F., Quilgars A., Daële V., Mellouki A. // J. Aerosol Sci. 2012. V. 43. № 1. P. 14. https://doi.org/10.1016/j.jaerosci.2011.08.005
  5. Akgün E., Hubbuch J., Wörner M. // Macromol. Mater. Eng. 2014. V. 299. № 11. P. 1316. https://doi.org/10.1002/mame.201400032
  6. Suvarli N., Perner-Nochta I., Hubbuch J., Wörner M. // Polymers (Basel). 2021. V. 13. № 24. P. 4363. https://doi.org/10.3390/polym13244363
  7. Reinhold M., Horst C., Hoffmann U. // Chem. Eng. Sci. 2001. V. 56. № 4. P. 1657. https://doi.org/10.1016/S0009-2509(00)00394-8
  8. Glavas L., Odelius K., Albertsson A.C. // Biomacromol. Am. Chem. Soc. 2016. V. 17. № 9. P. 2930. https://doi.org/10.1021/acs.biomac.6b00747
  9. Murray B.J., Bertram A.K. // Phys. Chem. Chem. Phys. 2006. V. 8. № 1. P. 186. https://doi.org/10.1039/b513480c
  10. Федосеев В.Б., Федосеева Е.Н. // Письма в ЖЭТФ. 2013. Т. 97. № 7. С. 473. 10.7868/S0370274X13070072 (Fedoseev V.B., Fedoseeva E.N. // JETP Lett. 2013. V. 97. № 7. P. 408). https://doi.org/10.1134/S0021364013070059
  11. Lee J.K., Walker K.L., Han H.S., Kang J., Prinz F.B., Waymouth R.M., Nam H.G., Zare R.N. // Proc. Natl. Acad. Sci. 2019. V. 116. № 39. P. 19294. https://doi.org/10.1073/pnas.1911883116
  12. Федосеев В.Б., Федосеева Е.Н. // Конденсированные среды и межфазные границы. 2022. № 24(1). С. 101. 10.17308/kcmf.2022.24/9060 (Fedoseev V.V., Fedoseeva E.N. // Condensed Matter and Interphases. 2022. V. 24. № 1. P. 101). https://doi.org/10.17308/kcmf.2022.24/9060
  13. Chen P., Ye N., He C., Tang L., Li S., Sun L., Li Y. // Appl. Sci. 2019. V. 9. № 2. P. 228. https://doi.org/10.3390/app9020228
  14. Partch R.E., Nakamura K., Wolfe K.J., Matijević E.// J. Colloid Interface Sci. 1985. V. 105. № 2. P. 560. https://doi.org/10.1016/0021-9797(85)90331-5
  15. Arias V., Odelius K., Albertsson A.C. // Macromol. Rapid Commun. 2014. V. 35. № 22. P. 1949. https://doi.org/10.1002/marc.201400374
  16. Petranović Z., Edelbauer W., Vujanović M., Duić N. // Fuel. 2017. V. 191. P. 25. https://doi.org/10.1016/j.fuel.2016.11.051
  17. Roelofs F., Vogelsberger W., Buntkowsky G. // Zeitschrift fur Phys. Chemie. 2008. V. 222. № 8–9. P. 1131. https://doi.org/10.1524/zpch.2008.5393
  18. Cui Z., Xue Y., Xiao L., Wang, T. // J. Comput. Theor. Nanosci. 2013. V. 10. № 3. P. 569. https://doi.org/10.1166/jctn.2013.2735
  19. Xue Y., Wang X., Cui Z. // Prog. React. Kinet. Mech. 2011. V. 36. № 4. P. 329. https://doi.org/10.3184/146867811X13103063934186
  20. Стрижак П.Е., Трипольский, А.И., Космамбетова Г.Р., Диденко О.З., Гурник Т.Н. // Кинетика и катализ. 2011. Т. 52. № 1. С. 131. (Strizhak P.E., Trypolskyi A.I., Kosmambetova G.R., Didenko O.Z., Gurnyk T.N. // Kinet. Catal. 2011. V. 52. № 1. P. 128. https://doi.org/10.1134/S0023158411010186)
  21. Шишулин А.В., Федосеев В.Б. // Кинетика и катализ. 2019. Т. 60. № 3. С. 334. 10.1134/S0453881119030134 (Shishulin A.V., Fedoseev V.B. // Kinet. Catal. 2019. V. 60. № 3. P. 315. https://doi.org/10.1134/S0023158419030121)
  22. Corral Arroyo P., David G., Alpert P.A., Parmentier E.A., Ammann M., Signorell R. // Science (New York). 2022. V. 376. № 6590. P. 293. https://doi.org/10.1126/science.abm7915
  23. Qiu J., Ishizuka S., Tonokura K., Colussi A.J., Enami S. // J. Phys. Chem. Lett. 2019. V. 10. № 19. P. 5748. https://doi.org/10.1021/acs.jpclett.9b01953
  24. Ермаков А.Н. // Кинетика и катализ. 2023. Т. 64. № 1. С. 86. 10.31857/S045388112301001X (Yermakov А.N. // Kinetics and Catalysis. 2023. V. 64. № 1. P. 74. https://doi.org/10.1134/S0023158423010019)
  25. Wei Z., Li, Y., Cooks R.G., Yan X. // Annu. Rev. Phys. Chem. 2020. V. 71. P. 31. https://doi.org/10.1146/annurev-physchem-121319-110654
  26. Raula J., Eerikäinen H., Kauppinen E.I. // Int. J. Pharm. 2004. V. 284. № 1–2. P. 13. https://doi.org/10.1016/j.ijpharm.2004.07.003
  27. Roshchin D.E., Patlazhan S.A., Berlin A.A. // Eur. Polym. J. 2023. P. 112002. https://doi.org/10.1016/j.eurpolymj.2023.112002
  28. Федосеев В.Б. // Письма в журнал технической физики. 2023. Т. 49. № 8. С. 32. 10.21883/PJTF.2023.08.55135.19469 (Fedoseev V.B. // Tech. Phys. Lett. 2023. V. 49. № 4. P. 71). https://doi.org/10.21883/TPL.2023.04.55884.19469
  29. Русанов А.И. // Коллоидный журнал. 2012. Т. 74. № 2. С. 148. (Rusanov, A.I. // Colloid J. 2012. V. 74. № 2. P. 136). https://doi.org/10.1134/S1061933X1202010X
  30. Федосеев В.Б., Федосеева Е.Н. // Инженерно-физический журнал. 2020. Т. 93. № 5. С. 1154. (Fedoseev V.B., Fedoseeva E.N. // J. Eng. Phys. Thermophys. 2020. V. 93. № 5. P. 1116). https://doi.org/10.1007/s10891-020-02212-6
  31. Федосеев В.Б., Федосеева Е.Н. // Инженерно-физический журнал. 2019. Т. 92. № 5. С. 2229. (Fedoseev, V.B., Fedoseeva E.N. // J. Eng. Phys. Thermophys. 2019. V. 92. № 5. P. 1191). https://doi.org/10.1007/s10891-019-02033-2
  32. Франк-Каменецкий Д.А. Основы макрокинетики. Диффузия и теплопередача в химической кинетике. Долгопрудный: Издательский Дом “Интеллект”, 2008. 408 с.
  33. Marin A., Karpitschka S., Noguera-Marín D., Cabrerizo-Vílchez M.A., Rossi M., Kähler C.J., Rodríguez Valverde M.A. // Phys. Rev. Fluids. 2019. V. 4. № 4. P. 041601. https://doi.org/10.1103/PhysRevFluids.4.041601
  34. Zaveri R.A., Easter R.C., Shilling J.E., Seinfeld, J.H. // Atmos. Chem. Phys. 2014. V. 14. № 10. P. 5153. https://doi.org/10.5194/acp-14-5153-2014
  35. Säckel W., Nieken U. // Macromol. Symp. 2013. V. 333. № 1. P. 297. https://doi.org/10.1002/masy.201300058
  36. Fisenko S.P., Wang W., Wuled Lenggoro I., Okyuama K. // Chem. Eng. Sci. 2006. V. 61. № 18. P. 6029. https://doi.org/10.1016/j.ces.2006.05.028
  37. Федосеев В.Б. // Вестник ННГУ. 2000. № 1. С. 146.
  38. Эндрюс Г. Теория разбиений. Москва: Наука, 1982. 256 с.
  39. Емельяненко В.Н., Веревкин С.П., Шик К., Степурко Е.Н., Роганов Г.Н., Георгиева М.К. // Журнал физической химии. 2010. Т. 84. № 9. С. 1638. (Emel'yanenko V.N., Verevkin S.P., Schick C., Stepurko E.N., Roganov G.N., Georgieva M.K. // Russ. J. Phys. Chem. A. 2010. V. 84. № 9. P. 1491). https://doi.org/10.1134/S0036024410090074
  40. Федосеев В.Б., Федосеева Е.Н. // Инженерно-физический журнал. 2023. Т. 96, № 5. С. 1204. (Fedoseev V.B., Fedoseeva E.N. // J. Eng. Phys. Thermophys. 2023. V. 96. № 5. P. 1196). https://doi.org/10.1007/s10891-023-02785-y
  41. Harshe Y.M., Storti G., Morbidelli M., Gelosa S., Moscatelli D. // Macromol. React. Eng. 2007. V. 1. № 6. P. 611. https://doi.org/10.1002/mren.200700019
  42. Kim K.W., Woo S.I. // Macromol. Chem. Phys. 2002. V. 203. № 15. P. 2245. https://doi.org/10.1002/1521-3935(200211)203:15<2245::AID-MACP2245>3.0.CO;2-3
  43. Ren J. // Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 15.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Results of modeling the dynamics of polycondensation of lactic acid in droplets with a radius, μm: 27 (1), 58 (2), 125 (3), 270 (4), 582 (5). The arrow indicates the position of the maximum on curve 5.

Baixar (89KB)
3. Fig. 2. Change in the contraction rate during drying of sessile drops of lactic acid solution in the process of polycondensation with a radius, µm: 2 (1), 10 (2), 14 (3), 30 (4).

Baixar (89KB)
4. Fig. 3. Theoretical and experimental (dashed line) estimates of the time to reach the maximum rate of polycondensation depending on the radius of the drop. The theoretical dependence is normalized for a drop with a radius of 30 µm (circle).

Baixar (126KB)