Distinguishing between Linear and Non-Linear (Cooperative) Substrate Activation Mechanisms in the Sonogashira Reaction under “Ligand-Free” and “Copper-Free” Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results are presented on the comparative studies of the differential selectivity patterns in the Sonogashira reaction with a pair of competing aryl acetylenes in the “ligand-free” and “copper-free” conditions when varying the nature and concentration of aryl halides and base. The revealed sensitivity of the differential selectivity of competing aryl acetylenes to aryl halide nature unambiguously indicated that the substrates were activated through linear mechanism from kinetic view. An absence of any influence of the nature and concentration of the base on the differential selectivity of competing aryl acetylenes indicated the irreversible character of the step of their activation.

Sobre autores

E. Larina

Irkutsk State University, Chemical Department

Email: aschmidt@chem.isu.ru
Russia, 664033, Irkutsk, K. Marx str., 1

A. Kurokhtina

Irkutsk State University, Chemical Department

Email: aschmidt@chem.isu.ru
Russia, 664033, Irkutsk, K. Marx str., 1

N. Lagoda

Irkutsk State University, Chemical Department

Email: aschmidt@chem.isu.ru
Russia, 664033, Irkutsk, K. Marx str., 1

A. Schmidt

Irkutsk State University, Chemical Department

Autor responsável pela correspondência
Email: aschmidt@chem.isu.ru
Russia, 664033, Irkutsk, K. Marx str., 1

Bibliografia

  1. Rayadurgam J., Sana S., Sasikumar M., Gu Q. // Org. Chem. Front. 2021. V. 8. № 2. P. 384.
  2. Zhu X., Wang D., Huang H., Zhang X., Wang S., Zhua H. // Dye Pigment. 2019. V. 171. P. 107657.
  3. Wang H., Li M., Liu Y., Song J., Li C., Bo Z. // J. Mater. Chem. C. 2019. V. 7. P. 819.
  4. Buskes M.J., Blanco M.J. // Molecules. 2020. V. 25. № 15. P. 3493.
  5. Sonogashira K. // J. Organomet. Chem. 2002. V. 653. № 1–2. P. 46.
  6. Dodson J.R., Hunt A.J., Parker H.L., Yang Y., Clark J.H. // Chem. Eng. Process. 2012. V. 51. P. 69.
  7. Siemsen P., Livingston R.C., Diederich F. // Angew. Chem. Int. Ed. 2000. V. 39. P. 2632.
  8. Mohajer F., Heravi M.M., Zadsirjan V., Poormohammad N. // RSC Adv. 2021. V. 11. № 12. P. 6885.
  9. Chinchilla R., Nájera C. // Chem. Soc. Rev. 2011. V. 40. № 10. P. 5084.
  10. Martek B.A., Gazvoda M., Urankar D., Košmrlj J. // Org. Lett. 2020. V. 22. № 13. P. 4938.
  11. Bakherad M. // Appl. Organomet. Chem. 2013. V. 27. № 3. P. 125.
  12. Urgaonkar S., Verkade J.G. // J. Org. Chem. 2004. V. 69. № 17. P. 5752.
  13. Hong K., Sajjadi M., Suh J.M., Zhang K., Nasrollahzadeh M., Jang H.W., Varma R.S., Shokouhimehr M. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070.
  14. Sarmah M., Dewan A., Thakur A.J., Bora U. // Tetrahedron Lett. 2016. V. 57. № 8. P. 914.
  15. Gogoi A., Dewan A., Bora U. // RSC Adv. 2015. V. 5. № 1. P. 16.
  16. Cassar L. // J. Organomet. Chem. 1975. V. 93. P. 253.
  17. Dieck H.A., Heck F.R. // J. Organomet. Chem. 1975. V. 93. P. 259.
  18. García-Melchor M., Pacheco M.C., Nájera C., Lledós A., Ujaque G. // ACS Catal. 2012. V. 2. № 1. P. 135.
  19. Ljungdahl T., Bennur T., Dallas A., Emtenäs H., Mårtensson J. // Organometallics. 2008. V. 27. № 11. P. 2490.
  20. Gazvoda M., Virant M., Pinter B., Košmrlj J. // Nature Commun. 2018. V. 9. № 1. P. 1.
  21. Dubey P., Singh A.K. // ChemistrySelect. 2020. V. 5. № 10. P. 2925.
  22. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Schmidt E.Y., Lagoda N.A. // ChemCatChem. 2020. V. 12. № 21. P. 5523.
  23. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Lagoda N.A. // Mol. Catal. 2021. V. 499. P. 111321.
  24. Курохтина А.А., Ларина Е.В., Лагода Н.А., Шмидт А.Ф. // Кинетика и Катализ. 2022. Т. 63. С. 614. (Kurokhtina A.A., Larina E.V., Lagoda N.A., Schmidt A.F. // Kinet. Catal. 2022. V. 63. P. 543.)
  25. Excel for Scientists and Engineers: Numerical Methods. 2nd Ed. E.J. Billo. John Wiley & Sons, 2007. 480 p.
  26. Мироненко Р.М., Бельская О.Б., Лихолобов В.А. // Российский химический журнал. 2019. Т. 62. № 1–2. С. 141. (Mironenko R.M., Belskaya O.B., Likholobov V.A. // Rus. J. Gen. Chem. 2020. V. 90. P. 532.)
  27. Biffis A., Centomo P., del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. P. 2249.
  28. Meek S.J., Pitman C.L., Miller A.J.M. // J. Chem Educ. 2016. V. 93. № 2. P. 275.
  29. Tan Y., Barrios-Landeros F., Hartwig J.F. // J. Am. Chem. Soc. 2012. V. 134. P. 3683.
  30. Schmidt A.F., Kurokhtina A.A., Larina E.V. // Catal. Sci. Technol. 2014. V. 4. P. 3439.
  31. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Lagoda N.A. // Mol. Catal. 2022. V. 524. P. 112260.
  32. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2019. Т. 60. № 5. С. 555. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2019. V. 60. P. 551.)
  33. Темкин О.Н. // Кинетика и катализ. 2012. Т. 53. С. 326. (Temkin O.N. // Kinet. Catal. 2012. V. 53. P. 313.)
  34. Toledo A., Funes-ardoiz I., Maseras F., Albéniz A.C. // ACS Catal. 2018. V. 8. № 8. P. 7495.
  35. de Vries A.H.M., Mulders J.M.C.A., Mommers J.H.M., Henderickx H.J.W., de Vries J.G. // Org. Lett. 2003. V. 5. P. 3285.
  36. Eremin D.B., Ananikov V.P. // Coord. Chem. Rev. 2017.V. 346. P. 2.
  37. Schmidt A.F., al Halaiqa A., Smirnov V.V. // Synlett. 2006. V. 18. P. 2861.
  38. Finney E.E., Finke R.G. // Ind. Eng. Chem. Res. 2017. V. 56. № 37. P. 10271.
  39. Finke R.G., Ozkar S. // J. Phys. Chem. C. 2019. V. 123. P. 54.
  40. Köhler K., Kleist W., Pröckl S.S. // Inorg. Chem. V. 46. P. 1876.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (131KB)
3.

Baixar (83KB)
4.

Baixar (186KB)
5.

Baixar (55KB)
6.

Baixar (104KB)
7.

Baixar (82KB)
8.

Baixar (163KB)
9.

Baixar (95KB)
10.

Baixar (191KB)