iOk Platform for Automatic Search and Analysis of Objects on Images Using Artificial Intelligence in the Study of Supported Catalysts

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

iOk platform for automatic search and analysis of objects on images using artificial intelligence is presented. iOk platform combines web-service ParticlesNN and cloud services DLgram and No Code ML, which use Telegram messenger as interface. Platform allows working with any types of images (electron, probe, optical microscopy, photography) of any quality without preprocessing. Users can train the neural network by itself on their own images. The results of image recognition are objects, its areas, sizes and position on image. Presented services are in free access, no coding skills are required. iOk Platform is a user-friendly tool for the work with any type of images for automatic search of the objects and determination of their parameters.

Sobre autores

A. Nartova

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Autor responsável pela correspondência
Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5; Russia, 630090, Novosibirsk, Pirogov St. 1

A. Matveev

Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Pirogov St. 1

M. Mashukov

Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Pirogov St. 1

V. Belotserkovskii

Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Pirogov St. 1

N. Sankova

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Lavrentiev Ave. 5; Russia, 630090, Novosibirsk, Pirogov St. 1

V. Kudinov

Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Pirogov St. 1

A. Okunev

Novosibirsk State University

Email: nartova@catalysis.ru
Russia, 630090, Novosibirsk, Pirogov St. 1

Bibliografia

  1. Nartova A.V., Kovtunova L.M., Khudorozhkov A.K., Shefer K.I., Shterk G.V., Kvon R.I., Bukhtiyarov V.I. // Appl. Catal. A: Gen. 2018. V. 566. P. 174.
  2. Смирнов М.Ю., Вовк Е.И., Нартова А.В., Калинкин А.В., Бухтияров В.И. // Кинетика и катализ. 2018. Т. 59. № 5. С. 631. (Smirnov M.Y., Vovk E.I., Nartova A.V., Kalinkin A.V., Bukhtiyarov V.I. // Kinet. Catal. 2018. 59. P. 653–662.)
  3. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. // Nat. Methods. 2010. V. 9. P. 676.
  4. Horcas I., Fernandez R., Gomez-Rodriguez J.M., Colchero J., Gomez-Herrero J., Baro A.M. // Rev. Sci. Instrum. 2007. 78. P. 013705.
  5. Krizhevsky A., Sutskever I., Hinton G. / In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012. P. 1.
  6. Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. / Lecture Notes in Computer Science. Eds. Leibe B., Matas J., Sebe N., Welling M., Cham, Switzerland: Springer, 2016. V. 9905. P. 21.
  7. He K., Gkioxari G., Dollar P., Girshick R. / In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. P. 2980.
  8. Stringer C., Michaelos M., Pachitariu M. // Nature Methods. 2021. V. 18. № 1. P.100.
  9. Moen E., Bannon D., Kudo T., Graf W., Covert M., Valen D. // Nat. Methods. 2019. V. 16. № 12. P. 1233.
  10. Caicedo J., Goodman A., Karhohs K., Cimini B., Ackerman J., Haghighi M., Heng C., Becke T., Doan M., McQuin C., Rohban M., Singh S. // Nat. Methods. 2019. V.16. № 12. P.1247.
  11. Kudinov V.Yu., Mashukov M.Yu., Maslova E.A., Orishchenko K.E., Okunev A.G., Matveev A.V. / Proceedings-2020 Science and Artificial Intelligence Conference, S.A.I.ence, Novosibirsk, Russia, 2020. 9303201. 2020. P. 17.
  12. Okunev A.G., Mashukov M.Y., Nartova A.V., Matveev A.V. // Nanomater. 2020. V. 10. № 7. P. 1285:1.
  13. Fu G., Sun P., Zhu W., Yang J., Cao Y., Ying-Yang M., Cao Y.A. // Opt. Lasers Eng. 2019. V. 121. P. 397.
  14. Berg S., Kutra D., Kroeger T., Straehle C., Kausler B., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., Eren K., Cervantes J., Xu B., Beuttenmueller F., Wolny A., Zhang C., Koethe U., Hamprecht F., Kreshuk A. // Nat. Methods. 2019. V. 16. P. 1226.
  15. Okunev A.G., Nartova A.V., Matveev A.V. / In Proceedings of the International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019. P. 0940.
  16. Zhu H., Ge W., Liu Z. // Appl. Sci. 2019. V. 9. P. 3312.
  17. Liu Y., Xu K., Xu J. // Appl. Sci. 2019. V. 9. P. 3127.
  18. Feng S., Zhou H., Dong H. // Mater. Des. 2019. V. 162. P. 300.
  19. Yang T., Xiao L., Gong B., Huang L. // In Proceedings of SPIE, Optoelectronic Imaging and Multimedia Technology VI. Eds. Dai Q., Shimura T., Zheng Z., International Society for Optics and Photonics: Bellingham, WA, USA, 2019. V. 11187. P. 1118718.
  20. Ziatdinov M., Dyck O., Maksov A., Li X., Sang X., Xiao K., Unocic R., Vasudevan R., Jesse S., Kalinin S.V. // ACS Nano. 2017. V. 11. P. 12742.
  21. Modarres M.H., Aversa R., Cozzini S., Ciancio R., Leto A., Brandino G.P. // Sci. Rep. 2017. V. 7. P. 13282.
  22. Qu E.Z., Jimenez A.M., Kumar S.K., Zhang K. // ACS Macromolecules. 2021. V. 54. P. 3034.
  23. Monchot P., Coquelin L., Guerroudj K., Feltin N., Delvallée A., Crouzier L., Fischer N. // Nanomater. 2021. V. 11. P. 968.
  24. Nartova A.V., Mashukov M.Yu., Astakhov R.R., Kudinov V.Yu., Matveev A.V., Okunev A.G. // Catalysts. 2022. V. 12. № 2. P. 135:1.
  25. Cai Z., Vasconcelos N. // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, June 18–22, 2018. P. 6154.
  26. mmdetection [Электронный ресурс]. Электрон. дан. (11 файлов). URL: https://github.com/open-mmlab/mmdetection, свободный. Яз. англ. (дата обращ. 26.02.2021).
  27. Wada K. Labelme: Image Polygonal Annotation with Python [Электронный ресурс]. GitHub repository. Электрон. дан. (16 файлов). 2016. URL: https://github.com/wkentaro/labelme, свободный. Яз. англ. (дата обращ. 20.01.2021).
  28. Everingham M., Van Gool L., Williams C.K.I., Winn J., Zisserman A. // Int. J. Comput. Vision. 2010. V. 88. № 2. P. 303.
  29. COCO API – Dataset. Available online: https://github.com/cocodataset/cocoapi (accessed on 01.06.2020).
  30. Матвеев А.В., Машуков М.Ю., Нартова А.В., Санькова Н.Н., Окунев А.Г. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. Т. 13. С. 300.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (963KB)
4.

Baixar (1MB)
5.

Baixar (854KB)