On the problem of optimal control of operating backup machines

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We consider machines used in the production process of an enterprise, the failure of which leads to a stoppage of this process and losses. The technical condition and operating characteristics of machines deteriorate with an increase in their operating time. We construct a model for determining the optimal service life of such machines, which assumes that a failed machine is disposed and immediately replaced with a new machine of the same brand. However, the replacement process usually requires random, sometimes quite a long time. Then it is advisable to use a backup machine, and the subject of consideration is a complex of interchangeable main (working) and backup machines of the same brand. In this case, losses from stopping the production of the enterprise arise only after the failure of both machines of the complex, when orders for the delivery of replacement new machines is not yet been fulfilled. Methods of reliability theory and general principles of valuation theory allow us to construct a model for solving the problem of optimal control of the specified complex in discrete time. It turns out that decisions on decommissioning of one machine of the complex, on its designation as the main or backup machine should be made depending on the existence and condition of the second machine. The calculations carried out allow us to assume that of the two machines in the complex, the machine with the lower operating time should be designated as the main one, however, it is not possible to prove the validity of this hypothesis.

Sobre autores

S. Smolyak

Central Economics and Mathematics Institute, Russian Academy of Sciences (CEMI RAS)

Email: smolyak1@yandex.ru
Moscow, Russia

Bibliografia

  1. Гамкрелидзе Р. В. (1962). О скользящих оптимальных режимах // Доклады АН СССР. Т. 134. № 6. С. 1243– 1245. [Gamkrelidze R. V. (1962). On sliding optimal states. Doklady Akademii Nauk USSR, 143, 6, 1243–1245 (in Russian).]
  2. Гамкрелидзе Р. В. (1985). Скользящие режимы в теории оптимального управления // Труды МИАН СССР. Т. 169. С. 180–193. [Gamkrelidze R. V. (1985). Sliding modes in optimal control theory. In: “Topology, ordinary differential equations, dynamical systems. Collection of review articles. 2. On the occasion of the 50th anniversary of the institute”. Trudy Matematicheskogo Instituta im. V. A. Steklova, USSR, 169, 180–193; Proc. Steklov Inst. Math., 169 (1986), 185–198 (in Russian).]
  3. МСО (2022). Международные стандарты оценки. Пер. с англ. Совет по международным стандартам оценки. И. Л. Артеменков, С. А. Табакова (ред.). М.: Русское общество оценщиков, 2022. [International Valuation Standards (IVS) (2022). Moscow: Russian Valuation Council (in Russian).]
  4. Смоляк С. А. (2022). Экономический критерий оптимизации срока службы машин и оборудования с учетом их надежности // Экономическая наука современной России. № 1 (96). С. 45–55. [Smolyak S. A. (2022). Economic criteria for optimizing the assigned service life of machinery and equipment. Economics of Contemporary Russia, 1, 45–55 (in Russian)]. doi: 10.33293/1609-1442-2022-1(96)-45-55 (in Russian).]
  5. Смоляк С. А. (2024). Экономический подход к оптимизации назначенных сроков службы машин и оборудования // Экономика и управление: проблемы, решения. № 11. Т. 2 (158). С. 33–45. [Smolyak S. A. (2024). Economic approach to optimizing the assigned service life of machinery and equipment. Economics and Management: Problems, Solutions, 11, 2, 33–45. doi: 10.36871/ek.up. p. r. 2024.11.02.005 (in Russian).]
  6. Barlow R., Hunter L. (1960). Optimum preventive maintenance policies. Operations Research, 8, 90–100. doi: 10.1287/opre.8.1.90
  7. Fan W., Machemehl R., Kortum K. (2011). Equipment replacement optimization. Transportation Research Record: Journal of the Transportation Research Board, 2220, 88–98. doi: 10.3141/2220-11
  8. Jiang R. (2018). Performance evaluation of seven optimization models of age replacement policy. Reliability Engineering & System Safety, 180 (C), 302–311. doi: 10.1016/j.ress.2018.07.030
  9. Redmer A. (2009). Optimisation of the exploitation period of individual vehicles in freight transportation companies. Transportation Research. Part E, 45, 978–987.
  10. Smith D. J. (2011). Reliability, maintainability and risk: Practical methods for engineers. 8th ed. Oxford: Butterworth-Heinemann ltd.
  11. Terborgh G. (1948). Dynamic equipment policy. Ohio: McGraw Hill.
  12. Van Horenbeek A., Pintelon L., Muchiri P. (2010). Maintenance optimization models and criteria. International Journal of System Assurance Engineering and Management, 1 (3), 189–200. doi: 10.1007/s13198-011-0045-x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025