Correlation analysis of the interaction of surface magneto-hydrodynamic waves

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The correlation analysis of the interaction of nonlinear waves on the surface of a magnetic fluid in the regime of developed magneto-hydrodynamic wave turbulence is carried out. It is shown that the horizontal magnetic field leads to compression of the resonant interaction curve. From the physical point of view, this process corresponds to anisotropic transfer of magnetic energy into the energy of capillary waves traveling perpendicular to the external field direction.

Sobre autores

M. Gashkov

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russia

E. Kochurin

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: kochurin@iep.uran.ru
Yekaterinburg, Russia; Moscow, Russia

Bibliografia

  1. Zakharov V.E., Falkovitch G., L'vov V.S. Kolmogorov Spectra of Turbulence I. Wave Turbulence. Berlin: Springer-Verlag, 1992.
  2. Захаров В.Е., Филоненко Н.Н. // ПМТФ. 1967. Т. 8. №5. С. 62
  3. Захаров В.Е., Филоненко Н.Н. // Докл. АН СССР. 1966. Т. 170. №6. С. 1292.
  4. Захаров В.Е., Сагдеев Р.З. // Докл. АН СССР. 1970. Т. 192. №2. С. 297.
  5. Griffin A., Krstulovic G., Lvov V.S., Nazarenko S. // Phys. Rev. Lett. 2022. V. 128. Art. No. 224501.
  6. Shavit M., Falkovich G. // Phys. Rev. Lett. 2020. V. 125. Art. No. 104501.
  7. Semisalov B.V., Medvedev S.B., Nazarenko S.V., Fedoruk M.P. // Commun. Nonlinear Sci. Numer. Simul. 2024. V. 133. Art. No. 107957.
  8. Galtier S. // J. Plasma Phys. 2023. V. 89. No. 2. Art. No. 905890205.
  9. Galtier S. // J. Fluid Mech. 2023. V. 974. Art. No. A24.
  10. Kalaydzhyan T., Shuryak E. // Phys. Rev. D. 2015. V. 91. No. 8. Art. No. 083502.
  11. Кочурин Е.А., Кузнецов Е.А. // Письма в ЖЭТФ. 2022. Т. 116. №12. С. 830
  12. Falcon E., Mordant N. // Annu. Rev. Fluid Mech. 2022. V. 54. P. 1.
  13. Kochurin E., Ricard G., Zubarev N., Falcon E. // JETP Lett. 2020. V. 112. P. 757.
  14. Ricard G., Falcon E. // Europhys. Lett. 2021. V. 135. Art. No. 64001.
  15. Кочурин Е.А. // Письма в ЖЭТФ. 2023. Т. 118. № 12. С. 889; Kochurin E.A. // JETP Lett. 2023. V. 118. P. 893.
  16. Симоновский А.Я., Закинян А.Р. // Изв. РАН Сер. физ. 2024. Т. 88. № 10. С. 1626
  17. Шарова О.А., Пелевина Д.А., Налетова В.А. // Изв. РАН Сер. физ. 2024. Т. 88. № 10. С. 1644.
  18. Бекетова Е.С., Мкртчян В.Д., Диканский Ю.И. // Изв. РАН. Сер. физ. 2024. Т. 88. № 10. С. 1594.
  19. Boyer F., Falcon E. // Phys. Rev. Lett. 2008. V. 101. Art. No. 244502.
  20. Dorbolo S., Falcon E. // Phys. Rev. E. 2011. V. 83. Art. No. 046303.
  21. Nazarenko S. Wave Turbulence. Berlin: Springer-Verlag, 2011.
  22. Kochurin E., Ricard G., Zubarev N., Falcon E. // Phys. Rev. E. 2022. V. 105. Art. No. L063101.
  23. Dmitriev I.A., Kochurin E.A., Zubarev N.M. // IEEE Trans. Dielectr. Electr. Insul. 2023. V. 30. No. 4. P. 1408.
  24. Кочурин Е.А. // Письма в ЖЭТФ. 2019. Т. 109. № 5. С. 306; Kochurin E.A. // JETP Lett. 2019. V. 109. No. 5. P. 303.
  25. Melcher J.R. // Phys. Fluids 1961. V. 4. P. 1348.
  26. Зубарев Н.М., Кочурин Е.А. // ПМТФ. 2013. Т. 54. № 2. С. 52; Zubarev N.M., Kochurin E.A. // J. Appl. Mech. Tech. Phys. 2013. V. 54. P. 212.
  27. Zubarev N.M. // Phys. Lett. A. 2004. V. 333. P. 284.
  28. Зубарев Н.М. // Письма в ЖЭТФ. 2009. Т. 89. № 6. С. 317; Zubarev N.M. // JETP Lett. 2009. V. 89. P. 271.
  29. Kochurin E.A., Zubareva O.V., Zubarev N.M. // IEEE Trans. Dielect. Electr. Insul. 2020. V. 27. P. 1222.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025