ADAPTATION OF JUVENILE PLANTS HERACLEUM MANTEGAZZIANUM SOMMIER & LEVIER TO LIGHT REGIME IN LABORATORY CONDITIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Structural and functional parameters of juvenile plantsHeracleum mantegazzianum Sommier & Levier were studied in laboratory conditions. The plant illumination intensity was modeled based on observations of the light regime in the ground layer of natural populations of the species. Growing H. mantegazzianum under illumination of 250 μmol/m2s PAR(simulating the spring period) showed that at the initial stage of juvenile growth, the contribution of the main phytomass to the leaves and a high rate of net photosynthesis maintained a relative growth rate of 80 mg/g·dry weight day. The plants adapted to a decrease in illumination to 20 μmol/m2s PAR (simulating the summer period) by lengthening the petioles, decreasing the leaf density, and increasing the size of the light-harvesting complex of leaf pigments. Limitation of light resources caused a decrease in the relative growth rate to 14 mg/g dry weight day. Restoring the illumination level to 250 μmol/m2s PAR (simulating the autumn period) activated growth and contributed to the storage of plastic substances, mainly in the underground organs of plants. The structural and functional changes in juvenile H. mantegazzianum revealed in the experiment indicate high efficiency of light resource use in spring and autumn, as well as a significant decrease in metabolic activity during summer shading. This strategy promotes effective growth during a long growing season and the preservation of the number of juvenileH. mantegazzianum under conditions of intraspecific competition.

About the authors

I. V. Dalke

Institute of Biology of the Komi Science Center, Ural Branch, the Russian Academy of Sciences

Email: dalke@ib.komisc.ru
Russia 167982 Syktyvkar

R. V. Malyshev

Institute of Biology of the Komi Science Center, Ural Branch, the Russian Academy of Sciences

Russia 167982 Syktyvkar

Yu. A. Smotrina

Institute of Biology of the Komi Science Center, Ural Branch, the Russian Academy of Sciences; Syktyvkar State University named after Pitirim Sorokin

Russia 167982 Syktyvkar; Russia 167001 Syktyvkar

O. V. Dymova

Institute of Biology of the Komi Science Center, Ural Branch, the Russian Academy of Sciences

Russia 167982 Syktyvkar

References

  1. Haubrock P.J.,Soto I., Ahmed D.A.et al. Biological invasions are a population level rather than a species level phenomenon // Global Change Biology. 2024. V. 30. № 5. Art. e17312. https://onlinelibrary.wiley.com/doi/10.1111/gcb.17312
  2. McDaniel S., Ostertag R. Strategic light manipulation as a restoration strategy to reduce alien grasses and encourage native regeneration in Hawaiian mesic forests // Applied Vegetation Science. 2010. V. 13. № 3. P. 280–290. https://doi.org/10.1111/j.1654-109X.2009.01074.x
  3. Funk J.L. The physiology of invasive plants in low-resource environments // Conservation Physiology.2013. V. 1. № 1. Art. cot026. https://doi.org/10.1093/conphys/cot026
  4. Lennox R., Choi K., Harrison P.M. et al. Improving science-based invasive species management with physiological knowledge, concepts, and tools // Biological Invasions. 2015. V. 17. № 8. P. 2213–2227. https://doi.org/10.1007/s10530-015-0884-5
  5. Boardman L., Lockwood J.L., Angilletta M.J. et al. The future of invasion science needs physiology // BioScience. 2022. V. 72. № 12. P. 1204–1219. https://doi.org/10.1093/biosci/biac080
  6. Сацыперова И.Ф. Борщевики флоры СССР – новые кормовые растения. Л.: Наука, 1984. 223 с.
  7. Ecology and management of Giant Hogweed (Heracleum mantegazzianum). CAB International / Eds. Pysek P., Cock M.J.W., Nentwig W., Ravn H. P. Gateshead, 2007. 352 p.
  8. Озерова Н.А., Кривошеина М.Г. Особенности формирования вторичных ареалов борщевиков Сосновского и Мантегацци (Heracleum sosnowskyi,H. mantegazzianum) на территории России // Российский журн. биологич. инвазий. 2018. № 1. С. 78–87.
  9. Шадрин Д.М., Далькэ И.В., Захожий И.Г. и др. Молекулярно-генетические исследования Heracleum sosnowskyi Manden. и Heracleum mantegazzianum Sommier & Levier (Apiaceae) европейской части России //Российский журн. биологич. инвазий. 2024. № 2. С. 153–171. https://doi.org/10.35885/1996-1499-17-2-153-171
  10. Tappeiner U., Cernusca A. Model simulation of spatial distribution of photosynthesis in structurally differing plant communities in the Central Caucasus // Ecological Modelling. 1998. V. 113. № 1–3. P. 201–223. https://doi.org/10.1016/S0304-3800(98)00144-6
  11. Dalke I.V., Chadin I.F., Zakhozhiy I.G.et al. Traits of Heracleum sosnowskyi plants in monostand on invaded area // Plos One. 2015. V. 10.№11.Art.e0142833. https://doi.org/10.1371/journal.pone.0142833
  12. Веселкин Д.В., Иванова Л.А., Иванов Л.А.и др. Способность к быстрому использованию ресурсов как основа инвазивного синдрома Heracleum sosnowskyi // Доклады РАН. 2017. Т. 473. № 1. С. 114–117. https://doi.org/10.7868/S0869565217070283
  13. Бетехтина Ю.В., Ронжина Д.А., Иванова Л.А. и др. Относительная скорость роста и ее компоненты у инвазионного Heracleum sosnowskyi и аборигенного H. sibiricum// Российский журн. биологич. инвазий. 2018. № 4. С. 7–16.
  14. Панасенко Н.Н. Некоторые вопросы биологии и экологии борщевика Cосновского (Heracleum sosnowskyi Manden.) // Российский журн. биологич. инвазий.2017. № 2. P. 95–106.
  15. Dalke I.V., Maslova S.P., Zakhozhiy I.G. et al. Structure of cenopopulations ofHeracleum sosnowskyiand mechanisms for maintaining their stability under the north conditions // Russ. Journal of Ecology.2024. V. 55. № 2. P. 79–88. https://doi.org/10.1134/S1067413624020024
  16. Тооминг Х.Г.Экологические принципы максимальной продуктивности посевов. Л.: Гидрометео- издат, 1984. 264 c.
  17. Bazzaz F.A. Plants in changing environments: linking physiological, population, and community ecology. Cambridge; New York: Cambridge University Press, 1996. 320 p.
  18. Широков А.И. Использование метода парцеллярного анализа для оценки структурного биоразнообразия лесных сообществ // Лесоведение. 2005. № 1. C. 19–27.
  19. Pilon N.A.L., Durigan G., Rickenback J.et al.Shade alters savanna grass layer structure and function along a gradient of canopy cover // J. Vegetation Science. 2021. V. 32. № 1. Art. e12959. https://doi.org/10.1111/jvs.12959
  20. Grime J.P., Hunt R.Relative growth-rate: its range and adaptive significance in a local flora // The Journal of Ecology. 1975. V. 63. № 2. P. 393–422. https://doi.org/10.2307/2258728
  21. Poorter H., Van Der Werf A. Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species // Inherent variation in plant growth: physiological mechanisms and ecological consequences / Eds. Lambers H. et al. Backhuys, 1998. P. 309–336.
  22. Myrås H., Junttila O. Interaction betweenHeracleum laciniatumand some other plants // Holarctic Ecology. 1981. V. 4. № 1. P. 43–48. http://www.jstor.org/stable/3682135
  23. Oguchi R., Hikosaka K., Hirose T. Does the photosynthetic light acclimation need change in leaf anatomy? // Plant Cell & Environment. 2003. V. 26. № 4. P. 505–512.
  24. Иванова Л.А., Иванов Л.А., Ронжина Д.А. и др. Структурные параметры мезофилла листа при затенении растений разных функциональных типов // Физиология растений. 2008. Т. 55. № 2. C. 230–239.
  25. Веселкин Д.В., Дубровин Д.И., Рафикова О.С.и др. Затенение и перехват света в зарослях инвазионных видов Acer negundoи Sorbaria sorbifolia// Российский журн. биологич. инвазий. 2021. Т. 14. № 4. С. 30–42 doi: 10.35885/1996-1499-2021-14-4-30-42
  26. Youn W. B., Hernandez J. O., Park B. B. Effects of shade and planting methods on the growth of Heracleum moellendorffii and Adenophora divaricata in different soil moisture and nutrient conditions // Plants. 2021. V. 10. № 10. Art. 2203. https://doi.org/10.3390/plants10102203
  27. Далькэ И.В., Маслова С.П., Плюснина С.Н. и др. Новый метод определения календарного возраста растений Heracleum sosnowskyi и оценка на его основе возрастного состава в ценопопуляциях вида на севере // Экология. 2023. № 3. C. 212–219. https://doi.org/10.31857/S0367059723030022
  28. Schneider C.A., Rasband W.S., Eliceiri K W. NIH Image to ImageJ: 25 years of image analysis // Nat Methods. 2012. V. 9. № 7. P. 671–675. https://doi.org/10.1038/nmeth.2089
  29. Hunt R., Causton D.R., Shipley B. et al. A modern tool for classical plant growth analysis // Annals of Botany. 2002. V. 90. № 4. P. 485–488. https://doi.org/10.1093/aob/mcf214
  30. Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes / Methods in Enzymology / Eds. Colowick S.P., Kaplan N.O. San Diego: Academic Press, 1987.P. 350–382.
  31. Захожий И.Г., Далькэ И.В., Чадин И.Ф. и др. Эколого-географический анализ распространения Heracleum persicum, H. mantegazzianum и H. sosnowskyi на северной границе вторичного ареала видов в Европе // Российский журн. биологич. инвазий.2022. № 1.С.55–70. https://doi.org/10.35885/1996-1499-15-1-55-70
  32. Reinhart K.O., Gurnee J., Tirado R.et al.Invasion through quantitative effects: intense shade drives native decline and invasive success // Ecological Applications. 2006. V. 16. № 5. P. 1821–1831. https://doi.org/10.1890/1051-0761(2006)016[1821:ITQEIS]2.0.CO;2
  33. Rijal D.P.,Torbjørn AlmT., Nilsen L.et al.Giant invasiveHeracleum persicum : Friend or foe of plant diversity? // Ecology and Evolution.2017.V. 7. № 13.P. 4936–4950. https://doi.org/10.1002/ece3.3055
  34. Чадин И.Ф. Тотальное уничтожение // АграрникЪ-A. 2020. № 1(105).C. 16–18.
  35. Далькэ И. В., Малышев Р. В., Маслова С.П. Экофизиология дыхания растений Heracleum sosnowskyi в условиях севера // Теоретическая и прикладная экология. 2020. № 2.C. 77–82. https://doi.org/10.25750/1995-4301-2020-2-077-082
  36. Маслова С.П., Дымова О.В., Малышев Р.В. и др. Функциональные характеристики почек возобновления Нeracleum sosnowskyi Manden. в период подготовки к перезимовке // Теоретическая и прикладная экология.2024. № 2. C. 185–192. https://doi.org/10.25750/1995-4301-2024-2-185-192
  37. Wherley B.G., Gardner D.S., Metzger J.D.Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity // Crop Science.2005. V. 45. № 2. P. 562–568. https://doi.org/10.2135/cropsci2005.0562
  38. Lisina T.N., Chetina O.A., Parfenkova V.A.et al.The ratio of red to far-red light affects growth, pigment content, and photosynthetic rates in cress plants // Russ. J. of Plant Physiology. 2024. V. 71. № 1. Art. 27. https://doi.org/10.1134/S1021443724604324
  39. Ross J.The radiation regime and architecture of plant stands. The Hague Boston London: W. Junk, 1981. 418 p.
  40. Vierling L.A., Wessman C.A.Photosynthetically active radiation heterogeneity within a monodominant congolese rain forest canopy // Agricultural and Forest Meteorology.2000. V. 103. № 3. P. 265–278. https://doi.org/10.1016/S0168-1923(00)00129-5
  41. Головко Т.К.Дыхание растений (физиологические аспекты). Санкт-Петербург:Наука, 1999. 204 c.
  42. Pons T.L. An ecophysiological study in the field layer of ash coppice iii influence of diminishing light intensity during growth onGeum urbanumandCirsium palustre// Acta Botanica Neerlandica. 1977. V. 26. № 3. P. 251–263. https://doi.org/10.1111/j.1438-8677.1977.tb00248.x
  43. Poorter H.Interspecific variation in relative growth rate: on ecological causes and physiological consequences // Variation in growth rate and productivity. SPB Academic / Eds. Lambers H. et al. The Hague, 1989. P. 45–68.
  44. Kattge J., Bönisch G., Díaz S.et al. TRY plant trait database – enhanced coverage and open access // Global Change Biology.2020.V. 26. № 1.P. 119–188. https://doi.org/10.1111/gcb.14904
  45. Крылов А.К., Марков А.В., Александров Ю.И.Единство популяции как способ выживания в нестабильной среде // Журнал общ. биол. 2020. Т. 81. № 3. C. 194–207. https://doi.org/10.31857/S0044459620030057

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences