Asymptotics of an Ultrasonic Sounding Field in Anisotropic Materials
- 作者: Glushkov E.V.1, Glushkova N.V.1
-
隶属关系:
- Kuban State University
- 期: 编号 3 (2025)
- 页面: 14-28
- 栏目: Acoustic methods
- URL: https://stomuniver.ru/0130-3082/article/view/682818
- DOI: https://doi.org/10.31857/S0130308225030029
- ID: 682818
如何引用文章
详细
To model the wave field of an ultrasonic transducer in materials with strong anisotropy (monocrystalline alloys of turbine blades, composite materials, welded joints, etc.), a physically descriptive asymptotic representation is obtained for quasi-spherical body waves excited by a surface source in an arbitrarily anisotropic elastic half-space. The asymptotics is derived by the stationary phase method from the integral representation of the solution in terms of contour integrals of the inverse Fourier transform. The peculiarities of their derivation and numerical implementation are discussed on the examples of a transversely isotropic composite material and a monocrystalline nickel alloy with cubic anisotropy. The dependence of the stationary points on the direction is more complicated here than in the isotropic case, up to the appearance of multiple stationary points and folds, giving rise to additional wave fronts and caustics. A comparison is made with the plane waves described by eigensolutions of the classical Christoffel equation. It is shown that, despite the phenomenon of multiple wave fronts, varying the plane-wave orientation allows us to obtain the same group velocity vectors as for any of the waves described by the asymptotics.
全文:

作者简介
Evgeny Glushkov
Kuban State University
编辑信件的主要联系方式.
Email: evg@math.kubsu.ru
俄罗斯联邦, 149, Stavropolskaya St., Krasnodar, 350040
Natalia Glushkova
Kuban State University
Email: nvg@math.kubsu.ru
俄罗斯联邦, 149, Stavropolskaya St., Krasnodar, 350040
参考
- Lane C. Wave Propagation in Anisotropic Media / In: The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer Theses. Cham: Springer. 2014. https://doi.org/10.1007/978-3-319-02517-9_2
- Pyankov V.A., Pyankov I.N. Acoustic methods of control of blades of gas turbine engines // V Mire NK. 2019. V. 22. No. 1 (83). P. 36—44 (in Russian).
- Morokov E., Titov S., Levin V. In situ high-resolution ultrasonic visualization of damage evolution in the volume of quasiisotropic CFRP laminates under tension // Composites Part B Engineering. 2022. V. 247. P. 110360. http://dx.doi.org/10.1016/j.compositesb.2022.110360
- Levin V., Petronyuk Y., Artyukov I., Bukreeva I., Malykhin A., Longo E., D’Amico L., Giannoukos K., Tromba G. Three-Dimensional Study of Polymer Composite Destruction in the Early Stages // Polymers. 2023. V. 15. P. 276. https://doi.org/10.3390/polym15020276
- Bazulin E.G. Allowing for inhomogeneous anisotropy of a welded joint when reconstructing reflector images from echo signals received by an ultrasonic antenna array // Defectoscopiya. 2017. No. 1. P. 11—25. https://doi.org/10.1134/S1061830917010028
- Kalkowski M.K., Lowe M.J.S., Samaitis V., Schreyer F., Robert S. Weld map tomography for determining local grain orientations from ultrasound // Proc. R. Soc. A. 2023. V. 479. P. 20230236. https://doi.org/10.1098/rspa.2023.0236
- Musgrave M.J.P. The propagation of elastic waves in crystals and other anisotropic media // Reports. Prog. in Phys. 1959. V. 22. P. 74—96. https://doi.org/10.1088/0034-4885/22/1/303
- Buchwald V.T. Elastic Waves in Anisotropic Media // Proc. Royal Soc. London. Series A, Math. and Phys. Sciences. 1959. V. 253. No. 1275. P. 563—580. http://www.jstor.org/stable/100706 Accessed 23 March 2024.
- Merkulov L.G., Yakovlev L.A. Some features of propagation and reflection of ultrasound in monocrystals // Sov. Phys. Acoust. (USA). 1962. V. 8. No. 1. P. 99—106. http://www.akzh.ru/pdf/1962_1_99-106.pdf
- Merkulov L.G. Ultrasonic waves in crystals // Appl. Mater. Res. 1963. V. 2. P. 231—240.
- Fedorov F.I. Theory of elastic waves in crystals. Moscow: Nauka, 1965. 388 p. (in Russian).
- Auld B.A. Acoustic fields and waves in solids. New York: Wiley, 1973. 423 p.
- Petrashen G.I. Wave propagation in anisotropic elastic media. Leningrad: Nauka, 1980, 280 p. (In Russian). https://www.libex.ru/detail/book111023.html
- Chadwick P. Wave propagation in transversely isotropic elastic media. I. Homogeneous plane waves // Proc. Roy. Soc. Lond. 1989. V. 422. P. 23—66. https://www.jstor.org/stable/2398523
- Alshits V.I., Lothe J. Some basic properties of bulk elastic waves in anisotropic media // Wave Motion. 2004. V. 40. P. 297—313. https://doi.org/10.1016/j.wavemoti.2004.02.004
- Babich V.M., Kiselev A.P. Elastic waves. High-frequency theory. St. Petersburg: BHV-Peterburg, 2014. 320 p. (in Russian).
- Wu K., Nagy P.B., Adler L. Far field radiation of a point source on the free surface of semi-infinite anisotropic solids / In: Review of Progress in Quantitative Nondestructive Evaluation. Eds. D.O. Thompson, D.E. Chimenti. N.Y.: Plenum Press, 1990. V. 9. P. 149—156.
- Wu K., Nagy P.B., Adler L. Far-field radiation of a vibrating point source in anisotropic media // J. Nondestruct. Eval. 1991. V. 10. P. 71—78. https://doi.org/10.1007/BF00568102
- Vorovich I.I., Babeshko V.A. Dynamic mixed problems of elasticity for non-classical domains. Moscow: Nauka, 1979. 320 p. (In Russian).
- Babeshko V.A., Glushkov E.V., Glushkova N.V. Analysis of wave fields generated in a stratified elastic half-space by surface sources // Sov. Phys. Acoust. (USA). 1986. V. 32. No. 3. P. 223—226. http://www.akzh.ru/pdf/1986_3_366-371.pdf
- Glushkov Ye.V., Glushkova N.V., Krivonos A.S. The excitation and propagation of elastic waves in multilayered anisotropic composites // Journal of Applied Mathematics and Mechanics. 2010. V. 74. P. 297—305.
- Glushkov E., Glushkova N., Eremin A. Forced wave propagation and energy distribution in anisotropic laminate composites // J. Acoust. Soc. Am. 2011. V. 129 (5). P. 2923—2934. http://dx.doi.org/10.1121/1.3559699
- Glushkov E.V., Glushkova N.V. Elastic waves in anisotropic materials / Proceedings of the XXXV Session of the Russian Acoustic Society. Moscow: GEOS Publisher, 2023. P. 942—946 (in Russian). https://doi.org/10.34756/GEOS.2023.17.38421
- Glushkov E.V., Glushkova N.V., Kiselev O.N. Body wave asymptotics for an anisotropic elastic half-space with a surface source / 2023 Days on Diffraction (DD). St. Petersburg. Russian Federation. 2023. P. 78—82. https://doi.org/10.1109/DD58728.2023.10325771
- Glushkov E.V., Glushkova N.V., Tatarkin A.A., Ermolenko O.A. Modeling of reflected ultrasonic fields in composed samples // Defectoskopiya. 2024. No. 11. P. 3—14. https://doi.org/10.31857/S0130308224110014
- Sveshnikov A.G. The principle of limiting absorption for a waveguide // Dokl. Akad. Nauk SSSR. 1951. V. 80. No. 3. P. 345—347 (in Russian).
- Glushkov E.V., Syromyatnikov P.V. Analysis of wave fields excited by a surface harmonic source in an anisotropic half-space, Manuscript submitted by Kuban State University, Dep. in VINITI 07.08.85. No. 5861-85, Krasnodar, 1985. 11 p. (In Russian).
- Tolstoy I., Usdin E. Wave propagation in elastic plates: low and high mode dispersion // J. Acoust. Soc. Am. 1957. V. 29. P. 37—42. https://doi.org/10.1121/1.1908675
- Burlii P.V., Kucherov I.Ya. Inverse elastic waves in plates // Letters in ZhETF. 1977. V. 26. No. 9. P. 644—647 (in Russian). https://journals.ioffe.ru/issues/722
- Fedoryuk M.V. Metod perevala (The Saddle-Point Method). Moscow: Nauka, 1977 (in Russian).
- Wang L., Yuan F.G. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments // Compos. Sci. Technol. 2007. V. 67 (8). P. 1370—1384. https://doi.org/10.1016/j.compscitech.2006.09.023
- Preslyak M.Yu. Investigation of features and calculation of wave surface cross sections in anisotropic elastic medium // Akust. Zhurn. 1981. V. 27. No. 2. P. 291—295. (In Russian). http://www.akzh.ru/pdf/1981_2_291-295.pdf
补充文件
