Ultrasonic testing of kaprolon by echo method

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Ultrasonic control of polymers by the echo method is difficult due to the high attenuation of acoustic waves in the material. To eliminate defects in finished products, enterprises are interested in finding a method for controlling internal defects in kaprolon blanks. The paper proposes flaw detection of kaprolon blanks by the echo method. For this purpose, the velocity of propagation of the longitudinal wave and its attenuation in the caprolon were determined, and the dimensions of the near zone for the transducers A111-2.5-K12, A121-2.5-40 (the angle of entry of the longitudinal wave into the caprolon is 31°) were calculated. An ultrasonic flaw detector with a probe pulse amplitude of 480 V is proposed, which is important for monitoring materials with a high attenuation coefficient. AVG-diagrams have been constructed for defects simulating pores. The calculated data showed convergence with the results of flaw detection of nylon samples with an artificial defect.

Texto integral

Acesso é fechado

Sobre autores

А. Platunov

Kalashnikov Izhevsk State Technical University

Autor responsável pela correspondência
Email: pmkk@istu.ru
Rússia, 426069, Izhevsk, Studencheskaya str., 7

P. Korepanov

Kalashnikov Izhevsk State Technical University

Email: pmkk@istu.ru
Rússia, 426069, Izhevsk, Studencheskaya str., 7

Bibliografia

  1. Larchenko A.G., Morozov S.M., Tirskikh E.YU. Method of non-destructive testing of products from thermo- and reset plastics. // Young Science of Siberia. 2024. № 2 (24). P. 243—249. (In Russ.) EDN: HCKNVA.
  2. Volkov S.S., Bigus G.A., Remizov A.L., Deryabin A.A. Non-destructive quality control of welded joints in ultrasonic welding of plastics // Welding and diagnostics. 2023. № 6. P. 46—51. (In Russ.) doi: 10.52177/2071-5234-2023-06-46. EDN: ETWHTA.
  3. Boychuk A.S., Dikov I.A., Chertischev V.Yu., Generalov A.S., Gorbovets M.A. Ultrasonic control of radius zones of monolithic carbon fiber structures with a radius phased array and a special mandrel // Trudy VIAM. 2023. No. 5 (123). P. 111—123. (In Russ.)
  4. Strizhak V.A. Acoustic Testing of Composite Rebars Taking into Account Reinforcement Ratio // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 10. P. 891—902. doi: 10.1134/S1061830922600836. EDN: ENJZNS.
  5. Stepanova L.N., Bataev V.A., Chernova V.V., Sheifer S.V. Influence of molding methods on defects in carbon fiber samples afm under static loading // Defectoskopiya. 2024. № 6. P. 3—14. (In Russ.) doi: 10.31857/S0130308224060063. EDN: DSIKAW.
  6. Bogdan O.P., Blinova A.V., Denisov L.A. Experimental Evaluation of the Possibility of Through Defects Detection in Thermally Expanded Graphite Workpieces by Acoustic Method // Vestnik IzhGTU imeni M.T. Kalashnikova. 2024. V. 27. No. 2. P. 97—105. (In Russ.) doi: 10.22213/2413-1172-2024-2-97-105. EDN: HIMAOQ.
  7. Ermolov I.N. Non-destructive testing / Handbook. In 7 volumes. Under the general editorship of V.V. Klyuev. V. 3: Ultrasound control / I.N. Ermolov, Yu.V. Lange. Moscow: Mashinostroenie Publ., 2004. 864 p. (In Russian.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Working ARD diagrams for caprolon using piezoelectric transducers P111-2.5-K12 (a) and P121-2.5-40 (b), input angle in caprolon is 31°.

Baixar (172KB)
3. Fig. 2. Crack in a sample of caprolon: defectogram (a); confirmed by penetrating substances (b).

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025