The phenomenon of endophytic insect-pathogenic fungi: origin, evolution, ecology

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

EIPF (Endophytic Insect-Pathogenic Fungi) is an ecologically flexible group of hypocrealean and some other fungi, capable of combining varied lifestyles: free-living saprotrophic, endophytic in plants and pathogenic in insects. For EIPFs, inhabiting insects is temporary and results in the death of their hosts, but they can also form relatively long-term, mutually beneficial consortia with plants. Transition from insects to plants or from plants to insects typically occurs not through direct contact, but after a free-living period in soil or other environment. Penetration of EIPF conidia through the plant and insect cuticles is accomplished through similar pathways, involving similar adhesin molecules. Host plants protect endophytic fungi from environmental factors and provide a source of carbon nutrition. EIPFs in turn can suppress phytophages and phytopathogens and stimulate host plant growth and immunity. Nitrogen transfer from dead insects to plants via EIPFs has been proven, representing a unique branch of the nitrogen cycle in nature.

作者简介

M. Pavlova

Federal Scientific Center for Biological Plant Protection

Email: fridaAmely@yandex.ru
Kalinina, 62, Krasnodar, 350065 Russia

A. Asaturova

Federal Scientific Center for Biological Plant Protection

Kalinina, 62, Krasnodar, 350065 Russia

参考

  1. Ашмарина Л.Ф., Леднев Г.Р., Томилова О.Г., Садохина Т.А., Бакшаев Д.Ю. и др., 2021. Влияние энтомопатогенного гриба Beauveria bassiana на развитие заболеваний кормовых бобов (Vicia faba) в полевых условиях // Докл. РАН. Науки о жизни. T. 499. № 1. С. 385–390. https://doi.org/10.31857/S268673892104003X
  2. Патогены насекомых: структурные и функциональные аспекты, 2001 / Под ред. Глупова В.В. М.: Круглый стол. 725 с.
  3. Крюков В.Ю., Ярославцева О.Н., Глупов В.В., 2020. Физиолого-экологические аспекты взаимоотношений между энтомопатогенными грибами (Ascomycota, Hypocreales) и насекомыми // Паразитология. Т. 54. № 6. С. 443–469. https://doi.org/10.31857/S1234567806060012
  4. Самарина Л.С., Маляровская В.И., Рогожина Е.В., Малюкова Л.С., 2017. Эндофитные микроорганизмы как промоутеры роста растений в культуре in vitro // Сельскохоз. биология. Т. 52. № 5. С. 917–927. https://doi.org/10.15389/agrobiology.2017.5.917rus
  5. Яруллина Л.Г., 2006. Механизмы индуцирования устойчивости пшеницы к грибным патогенам. Дис. … д-ра биол. наук. Уфа. 277 с.
  6. Abreu L.M., de, Almeida A.R., Salgado M., Pfenning L.H., 2010. Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis // Mycol. Progr. V. 9. Р. 559–566. https://doi.org/10.1007/s11557-010-0663-8
  7. Akutse K.S., Maniania N.K., Fiaboe K.K.M., Berg J., van den, Ekesi S., 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae) // Fungal Ecol. V. 6. P. 293–301. https://doi.org/10.1016/j.funeco.2013.01.003
  8. Allee L.L., Goettel M.S., Gol’berg A., Whitney H.S., Roberts D.W., 1990. Infection by Beauveria bassiana of Leptinotarsa decemlineata larvae as a consequence of fecal contamination of the integument following per os inoculation // Mycopathologia. V. 111. Р. 17–24. https://doi.org/10.1007/BF02277296
  9. Amin N., Daha L., Agus N., 2014. The study on the role of entomopathogenic fungal endophytes in controlling the cocoa pod borer (Conopomorpha cramerella (Snellen)) (Lepidoptera: Gracillariidae) on cocoa plant // J. Entomol. V. 11. № 3. P. 142–152. https://doi.org/10.3923/je.2014.142.152
  10. Anderson E., 1949. Introgressive Hybridization. N.-Y.: Wiley & Sons. 109 p.
  11. Batta Y.A., 2013. Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L. (Yponomeutidae: Lepidoptera) infesting Brassica napus plants // Crop Prot. V. 44. P. 128–134. https://doi.org/10.1016/j.cropro.2012.11.001
  12. Behie S.W., Jones S.J., Bidochka M.J., 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria // Fungal Ecol. V. 13. P. 112–119. https://doi.org/10.1016/j.funeco.2014.08.001
  13. Behie S.W., Moreira C.C., Sementchoukova I., Barelli L., Zelisko P.M., Bidochka M.J., 2017. Carbon translocation from a plant to an insect-pathogenic endophytic fungus // Nat. Commun. V. 8. № 1. https://doi.org/10.1038/ncomms14245
  14. Behie S.W., Zelisko P.M., Bidochka M.J., 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants // Science. V. 336. P. 1576–1577. https://doi.org/10.1126/science.1222289
  15. Bidochka M.J., Khachatourians G.G., 1991. The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper Melanoplus sanguinipes // J. Invertebr. Pathol. V. 58. P. 106–117.
  16. Bills G.F., Polishook J.D., 1991. Microfungi from Carpinus caroliniana // Can. J. Bot. V. 69. № 7. P. 1477–1482. https://doi.org/10.1139/b91-191
  17. Bing L.A., Lewis L.C., 1991. Suppression оf Ostrinia nubilalis (Hubner) (Lepidoptera, Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin // Environ. Entomol. V. 20. P. 1207–1211.
  18. Branine M., Bazzicalupo A., Branco S., 2019. Biology and applications of endophytic insect-pathogenic fungi // PLoS Pathog. V. 15. № 7. https://doi.org/10.1371/journal.ppat.1007831
  19. Cherry A., Banito A., Djegui D., Lomer C., 2004. Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana // Int. J. Pest Manag. V. 50. № 1. Р. 67–73. https://doi.org/10.1080/09670870310001637426
  20. Choudhary D.K., Prakash A., Johri B.N., 2007. Induced systemic resistance (ISR) in plants: Mechanism of action // Indian J. Microbiol. V. 47. № 4. P. 289–297. https://doi.org/10.1007/s12088-007-0054-2
  21. Cito A., Barzanti G.P., Strangi A., Francardi V., Zanfini A., Dreassi E., 2016. Cuticle-degrading proteases and toxins as virulence markers of Beauveria bassiana (Balsamo) Vuillemin // J. Basic Microbiol. V. 56. P. 941–948. https://doi.org/10.1002/jobm.201600022
  22. Cord-Landwehr S., Melcher R.L.J., Kolkenbrock S., Moerschbacher B.M., 2016. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells // Sci. Rep. V. 6. № 6. https://doi.org/10.1038/srep38018
  23. Davis K.A., Sampson J.K., Panaccione D.G., 2020. Genetic reprogramming of the ergot alkaloid pathway of Metarhizium brunneum // Appl. Environ. Microbiol. V. 86. № 19. https://doi.org/10.1128/AEM.01251-20
  24. Fan Y., Liu X., Keyhani N.O., Tang G., Pei Y., et al., 2017. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death // Proc. Natl Acad. Sci. USA. V. 114. № 9. P. 1578–1586. https://doi.org/10.1073/pnas.1616543114
  25. Gabriel B.P., 1959. Fungus infection of insects via the alimentary tract // J. Invertebr. Pathol. V. 1. P. 319–330.
  26. Gao F.K., Dai C.C., Liu X.Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens // Afr. J. Microbiol. Res. V. 4. № 13. P. 1346–1351.
  27. Gennaro M., Gonthier P., Nicolotti G., 2003. Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in Northern Italy // J. Phytopathol. V. 151. № 10. P. 529–534. https://doi.org/10.1046/j.1439-0434.2003.00763.x
  28. Golo P.S., Gardner D.R., Grilley M.M., Takemoto J.Y., Krasnoff S.B., et al., 2014. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants // PLoS One. V. 9. № 8. https://doi.org/10.1371/journal.pone.0104946
  29. Gómez-Vidal S., Lopez-Llorca L.V., Jansson H.B., Salinas J., 2006. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi // Micron. V. 37. № 7. Р. 624–632. https://doi.org/10.1016/j.micron.2006.02.003
  30. Greenfield M., Gomez-Jimenez M.I., Ortiz V., Vega V.E., Kramer M., Parsa S., 2016. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation // Biol. Control. V. 95. № 2. P. 40–48. https://doi.org/10.1016/j.biocontrol.2016.01.002
  31. Grove J.F., Pople M., 1980. The insecticidal activity of beauvericin and the enniatin complex // Mycopathologia. V. 70. P. 103–105.
  32. Gurulingappa P., Sword G.A., Murdoch G., McGee P.A., 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta // Biol. Control. V. 55. № 1. P. 34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011
  33. Henk D.A., Vilgalys R., 2007. Molecular phylogeny suggests a single origin of insect symbiosis in the Pucciniomycetes with support for some relationships within the genus Septobasidium // Am. J. Bot. V. 94. № 9. P. 1515–1526.
  34. Hirano E., Koike M., Aiuchi D., Tani M., 2008. Pre-inoculationof cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew // Res. Bull. Obihiro Univ. V. 29. P. 82–94.
  35. Iida Y., Higashi Y., Nishi O., Kouda M., Maeda K., et al., 2023. Entomopathogenic fungus Beauveria bassiana-based bioinsecticide suppresses severity of powdery mildews of vegetables by inducing the plant defense responses // Front. Plant Sci. V. 14. P. 1–13. https://doi.org/10.3389/fpls.2023.1211825
  36. Jones K.D., 1994. Aspects of the biology and biological control of the European corn borer in North Carolina. PhD thesis. Raleigh: North Carolina State Univ. 127 p.
  37. Kabaluk J.T., Ericsson J.D., 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control // Agron. J. V. 99. P. 1377–1381. https://doi.org/10.2134/agronj2007.0017N
  38. Kamran M., Imran Q.M., Ahmed M.B., Falak N., Khatoon A., Yun B.-W., 2022. Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement // Cells. V. 11. № 20. https://doi.org/10.3390/cells11203292
  39. Kanaoka M., Isoga A., Murakosh S.I., Ichjnoe M., Suzuki A., Tamura S., 1978. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii // Agric. Biol. Chem. V. 42. P. 629–635.
  40. Kaushik H., Dutta P., 2016. Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea // Res. Crops. V. 17. P. 375–387. https://doi.org/10.5958/2348-7542.2016.00063.2
  41. Khan A.L., Hamayun M., Khan S.A., Kang S.-M., Shinwari Z.K., et al., 2012. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress // World J. Microbiol. Biotechnol. V. 28. P. 1483–1494.
  42. Klieber J., Reineke A., 2016. The entomopathogenic Beauveria bassiana has epiphytic and endophytic activity against the tomato leafminer Tuta absoluta // J. Appl. Entomol. V. 140. № 8. P. 580–589. https://doi.org/10.1111/jen.12287
  43. Koroch A., Juliani H., Bischoff J., Lewis E., Bills G., et al., 2004. Examination of plant biotrophy in the scale insect parasitizing fungus Dussiella tuberiformis // Symbiosis. V. 37. P. 267–280.
  44. Kwaśna H., Szewczyk W., Behnke-Borowczyk J., 2016. Fungal root endophytes of Querqus robur subjected to flooding // Forest Pathol. V. 46. № 1. P. 35–46. https://doi.org/10.1111/efp.12212
  45. Larran S., Perello A., Simon M.R., Moreno V., 2002. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves // World J. Microbiol. Biotechnol. V. 18. № 7. P. 683–686. https://doi.org/10.1023/A:1016857917950
  46. Lefort M.-C., McKinnon A.C., Nelson T.L., Glare T.R., 2016. Natural occurrence of the entomopathogenic fungi Beauveria bassiana as a vertically transmitted endophyte of Pinus radiata and its effect on above- and below-ground insect pests // New Zealand Plant Prot. V. 69. № 6. P. 68–77. https://doi.org/10.7287/peerj.preprints.1632v1
  47. Liu K., Ding X., Deng B., Chen W., 2009. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis // J. Ind. Microbiol. Biotechnol. V. 36. № 9. P. 1171–1177. https://doi.org/10.1007/s10295-009-0598-8
  48. Lopez D.C., Sword G.A., 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea) // Biol. Control. V. 89. Р. 53–60. http://dx.doi.org/10.1016/j.biocontrol.2015.03.010
  49. Martin R., Gazis R.O., Skaltsas D., Chaverri P., Hibbett D.S., 2015. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea // Mycologia. V. 107. № 2. P. 284–297. https://doi.org/10.3852/14-206
  50. McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R., 2017. Beauveria bassiana as an endophyte: А critical review on associated methodology and biocontrol potential // Biol. Control. V. 62. № 1. P. 1–17. https://doi.org/10.1007/s10526-016-9769-5
  51. Molnar I., Gibson D.M., Krasnoff S.B., 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi // Nat. Prod. Rep. V. 27. № 9. P. 1241–1275. https://doi.org/10.1039/C001459C
  52. Muvea A.M., Meyhöfer R., Subramanian S., Poehling H.-M., Ekesi S., Maniania N.K., 2014. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci // PLoS One. V. 9. № 9. https://doi.org/10.1371/journal.pone.0108242
  53. Nicoletti R., Becchimanzi A., 2020. Endophytism of Lecanicillium and Akanthomyces // Agriculture. V. 10. № 6. Art. 205. https://doi.org/10.3390/agriculture10060205
  54. Petrini O., Andrews J.H., Hirano S.S., 1991. Fungal Endophytes in Tree Leaves. Microbial Ecology of Leaves. N.-Y.: Springer. P. 179–197. https://doi.org/10.1007/978-1-4612-3168-4_9
  55. Pimentel I.C., Gabardo J., Poitevin C.G., Stuart A.K.D.C., Azevedo J.L., de., 2016. Incidence of endophytic fungi and occurrence of Beauveria and Paecilomyces in maize (Zea mays L.) under field and greenhouse conditions // Asian J. Microbiol. Biotechnol. Environ. Sci. V. 18. № 1. P. 47–53.
  56. Posada F., Vega F.E., 2005. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao) // Mycologia. V. 97. № 6. P. 1195–1200. https://doi.org/10.3852/mycologia.97.6.1195
  57. Posada F., Vega F.E., 2006. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) // Mycoscience. V. 47. № 5. P. 284–289. https://doi.org/10.1007/s10267-006-0308-6
  58. Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D., 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae) // J. Entomol. Sci. V. 44. № 4. P. 391–396. https://doi.org/10.18474/0749-8004-44.4.391
  59. Quandt C.A., Patterson W., Spatafora J.W., 2018. Harnessing the power of phylogenomics to disentangle the directionality and signatures of interkingdom host jumping in the parasitic fungal genus Tolypocladium // Mycologia. V. 10. № 1. P. 104–117. https://doi.org/10.1080/00275514.2018.1442618
  60. Quesada-Moraga E., Landa B.B., Muñoz-Ledesma J., Jiménez Díaz R.M., Santiago-Álvarez C., 2006. Endophytic colonization of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain // Mycopathologia. V. 161. № 2. P. 323–329. https://doi.org/10.5958/2348-7542.2016.00063.2
  61. Quesada-Moraga E., López-Díaz C., Landa B.B., 2014. The hidden habit of the entomopathogenic fungus Beauveria bassiana: First demonstration of vertical plant transmission // PLoS One. V. 9. № 2. https://doi.org/10.1371/journal.pone.0089278
  62. Quesada-Moraga E., Muñoz-Ledesma F.J., Santiago-Alvarez C., 2009. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales) // Environ. Entomol. V. 38. № 3. P. 723–730. https://doi.org/10.1603/022.038.0324
  63. Reddy P.V., Lam K.C., Belanger F.C., 1996. Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity // Plant Physiol. V. 111. № 4. P. 1209–1218.
  64. Resquín-Romero G., Garrido-Jurado I., Delso C., Ríos-Moreno A., Quesada-Moraga E., 2016. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects // J. Invertebr. Pathol. V. 136. P. 23–31. https://doi.org/10.1016/j.jip.2016.03.003
  65. Ríos-Moreno A., Carpio A., Garrido-Jurado I., Arroyo-Manzanares N., Lozano-Tovar M.D., Arce L., 2016. Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS // Biocontrol. Sci. Technol. V. 26. P. 1298–1311. https://doi.org/10.1080/09583157.2016.1195336
  66. Rondot Y., Reineke A., 2018. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects // Biol. Control. V. 116. P. 82–89. https://doi.org/10.1016/j.biocontrol.2016.10.006
  67. Rubini M.R., Silva-Ribeiro R.T., Pomella A.W.V., Maki C.S., Araújo W.L., et al., 2005. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and bio- logical control of Crinipellis perniciosa, causal agent of witches’ broom disease // Int. J. Biol. Sci. V. 1. P. 24–33. https://doi.org/10.7150/IJBS.1.24
  68. Sánchez Márquez S., Bills G.F., Zabalgogeazcoa I., 2007. The endophytic mycobiota of the grass Dactylis glomerata // Fungal Divers. V. 27. P. 171–195.
  69. Sánchez-Rodríguez A.R., Raya-Díaz S., Zamarreño A.M., García-Mina J.M., Del Campillo M.C., Quesada-Moraga E., 2018. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae // Biol. Control. V. 116. P. 90–102. https://doi.org/10.1016/j.biocontrol.2017.01.012
  70. Sayed S., El-Shehawi A., Al-Otaibi S. et al., 2020. Isolation and efficacy of the endophytic fungus, Beauveria bassiana (Bals.) Vuillemin on grapevine aphid, Aphis illinoisensis Shimer (Hemiptera: Aphididae) under laboratory conditions // Egypt. J. Biol. Pest Control. V. 30. Art. 38. https://doi.org/10.1186/s41938-020-00234-z
  71. Shrivastava G., Ownley B.H., Augé R.M., Toler H., Dee M., et al., 2015. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect // Symbiosis. V. 65. № 2. P. 65–74. https://doi.org/10.1007/s13199-015-0319-1
  72. Spatafora J.W., Sung G., Sung J., Hywel-Jones N.L., White J.F., 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes // Mol. Ecol. V. 16. № 8. P. 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
  73. Steinhaus E.A., 1949. Principles of Insect Pathology. Toronto: McGraw-Hill Book Company, Inc. 757 p.
  74. Steinwender B.M., Enkerli J., Widmer F., Eilenberg J., Kristensen H.L., et al., 2015. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity // J. Invertebr. Pathol. V. 132. P. 142–148. https://doi.org/10.1016/j.jip.2015.09.007
  75. Suh S.O., Noda H., Blackwell M., 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage // Mol. Biol. Evol. V. 18. № 6. P. 995–1000. https://doi.org/10.1093/oxfordjournals.molbev.a003901
  76. Sung J.M., Lee J.O., Humber R.A., Sung G.H., Shrestha B., 2006. Cordyceps bassiana and production of stromata in vitro showing Beauveria аnamorph in Korea // Mycobiology. V. 34. № 1. P. 1–6. https://doi.org/10.4489/MYCO.2006.34.1.001
  77. Tian X.L., Cao L.X., Tan H.M., Zeng Q.G., Jia Y.Y., et al., 2004. Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro // World J. Microbiol. Biotechnol. V. 20. № 3. P. 303–309. https://doi.org/10.1023/B: WIBI.0000023843.83692.3f
  78. Unterseher M., Persoh D., Schnittler M., 2013. Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host // Fungal Divers. V. 60. P. 43–54. https://doi.org/10.1007/s13225-013-0222-0
  79. Vega E.F., Posada F., Aime М.С., Pava-Ripoll М., Infante F., et al., 2008. Entomopathogenic fungal endophytes // Biol. Control. V. 46. № 1. P. 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  80. Vega F.E., Simpkins A., Aime M.C., Posada F., Peterson S.W., et al., 2010. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto-Rico // Fungal Ecol. V. 3. № 1. P. 122–138. https://doi.org/10.1016/j.funeco.2009.07.002
  81. Vidal S., Jaber L., 2015. Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control // Curr. Sci. V. 109. № 1. P. 46–54.
  82. Wagner B.L., Lewis L.C., 2000. Colonization of corn, Zea mays, by thе entomopathogenic fungus Beauveria bassiana // Appl. Environ. Microbiol. V. 66. № 8. P. 3468–3473. https://doi.org/10.1128/AEM.66.8.3468-3473.2000
  83. Wang C., St Leger R.J., 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants // Eukaryot. Cell. V. 6. P. 808–816. https://doi.org/10.1128/EC.00409-06
  84. Wang Q., Xu L., 2012. Beauvericin, a bioactive compound produced by fungi: A short review // Molecules. V. 17. P. 2367–2377. https://doi.org/10.3390/molecules17032367
  85. Wilson D., 1995. Endophyte: The evolution of a term and clarification of its use and definition // Oikos. V. 73. P. 274–276.
  86. Ye W., Murata Y., 2016. Microbe associated molecular pattern signaling in guard cells // Front. Plant Sci. V. 7. https://doi.org/10.3389/fpls.2016.00583
  87. Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung T., Bors W., 2004. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes // Proc. Natl. Acad. Sci. USA. V. 101. P. 15811–15816. https://doi.org/10.1073/pnas.0404536101
  88. Zhang W., Zhang X., Li K., Wang C., Cai L., Zhuang W., 2018. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi // Mycology. V. 9. P. 176–188. https://doi.org/10.1080/21501203.2018.1478333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025