The phenomenon of endophytic insect-pathogenic fungi: origin, evolution, ecology
- 作者: Pavlova M.D.1, Asaturova A.M.1
-
隶属关系:
- Federal Scientific Center for Biological Plant Protection
- 期: 卷 86, 编号 5 (2025)
- 页面: 346-360
- 栏目: Articles
- URL: https://stomuniver.ru/0044-4596/article/view/697045
- DOI: https://doi.org/10.31857/S0044459625050037
- ID: 697045
如何引用文章
详细
EIPF (Endophytic Insect-Pathogenic Fungi) is an ecologically flexible group of hypocrealean and some other fungi, capable of combining varied lifestyles: free-living saprotrophic, endophytic in plants and pathogenic in insects. For EIPFs, inhabiting insects is temporary and results in the death of their hosts, but they can also form relatively long-term, mutually beneficial consortia with plants. Transition from insects to plants or from plants to insects typically occurs not through direct contact, but after a free-living period in soil or other environment. Penetration of EIPF conidia through the plant and insect cuticles is accomplished through similar pathways, involving similar adhesin molecules. Host plants protect endophytic fungi from environmental factors and provide a source of carbon nutrition. EIPFs in turn can suppress phytophages and phytopathogens and stimulate host plant growth and immunity. Nitrogen transfer from dead insects to plants via EIPFs has been proven, representing a unique branch of the nitrogen cycle in nature.
作者简介
M. Pavlova
Federal Scientific Center for Biological Plant Protection
Email: fridaAmely@yandex.ru
Kalinina, 62, Krasnodar, 350065 Russia
A. Asaturova
Federal Scientific Center for Biological Plant ProtectionKalinina, 62, Krasnodar, 350065 Russia
参考
- Ашмарина Л.Ф., Леднев Г.Р., Томилова О.Г., Садохина Т.А., Бакшаев Д.Ю. и др., 2021. Влияние энтомопатогенного гриба Beauveria bassiana на развитие заболеваний кормовых бобов (Vicia faba) в полевых условиях // Докл. РАН. Науки о жизни. T. 499. № 1. С. 385–390. https://doi.org/10.31857/S268673892104003X
- Патогены насекомых: структурные и функциональные аспекты, 2001 / Под ред. Глупова В.В. М.: Круглый стол. 725 с.
- Крюков В.Ю., Ярославцева О.Н., Глупов В.В., 2020. Физиолого-экологические аспекты взаимоотношений между энтомопатогенными грибами (Ascomycota, Hypocreales) и насекомыми // Паразитология. Т. 54. № 6. С. 443–469. https://doi.org/10.31857/S1234567806060012
- Самарина Л.С., Маляровская В.И., Рогожина Е.В., Малюкова Л.С., 2017. Эндофитные микроорганизмы как промоутеры роста растений в культуре in vitro // Сельскохоз. биология. Т. 52. № 5. С. 917–927. https://doi.org/10.15389/agrobiology.2017.5.917rus
- Яруллина Л.Г., 2006. Механизмы индуцирования устойчивости пшеницы к грибным патогенам. Дис. … д-ра биол. наук. Уфа. 277 с.
- Abreu L.M., de, Almeida A.R., Salgado M., Pfenning L.H., 2010. Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis // Mycol. Progr. V. 9. Р. 559–566. https://doi.org/10.1007/s11557-010-0663-8
- Akutse K.S., Maniania N.K., Fiaboe K.K.M., Berg J., van den, Ekesi S., 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae) // Fungal Ecol. V. 6. P. 293–301. https://doi.org/10.1016/j.funeco.2013.01.003
- Allee L.L., Goettel M.S., Gol’berg A., Whitney H.S., Roberts D.W., 1990. Infection by Beauveria bassiana of Leptinotarsa decemlineata larvae as a consequence of fecal contamination of the integument following per os inoculation // Mycopathologia. V. 111. Р. 17–24. https://doi.org/10.1007/BF02277296
- Amin N., Daha L., Agus N., 2014. The study on the role of entomopathogenic fungal endophytes in controlling the cocoa pod borer (Conopomorpha cramerella (Snellen)) (Lepidoptera: Gracillariidae) on cocoa plant // J. Entomol. V. 11. № 3. P. 142–152. https://doi.org/10.3923/je.2014.142.152
- Anderson E., 1949. Introgressive Hybridization. N.-Y.: Wiley & Sons. 109 p.
- Batta Y.A., 2013. Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L. (Yponomeutidae: Lepidoptera) infesting Brassica napus plants // Crop Prot. V. 44. P. 128–134. https://doi.org/10.1016/j.cropro.2012.11.001
- Behie S.W., Jones S.J., Bidochka M.J., 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria // Fungal Ecol. V. 13. P. 112–119. https://doi.org/10.1016/j.funeco.2014.08.001
- Behie S.W., Moreira C.C., Sementchoukova I., Barelli L., Zelisko P.M., Bidochka M.J., 2017. Carbon translocation from a plant to an insect-pathogenic endophytic fungus // Nat. Commun. V. 8. № 1. https://doi.org/10.1038/ncomms14245
- Behie S.W., Zelisko P.M., Bidochka M.J., 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants // Science. V. 336. P. 1576–1577. https://doi.org/10.1126/science.1222289
- Bidochka M.J., Khachatourians G.G., 1991. The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper Melanoplus sanguinipes // J. Invertebr. Pathol. V. 58. P. 106–117.
- Bills G.F., Polishook J.D., 1991. Microfungi from Carpinus caroliniana // Can. J. Bot. V. 69. № 7. P. 1477–1482. https://doi.org/10.1139/b91-191
- Bing L.A., Lewis L.C., 1991. Suppression оf Ostrinia nubilalis (Hubner) (Lepidoptera, Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin // Environ. Entomol. V. 20. P. 1207–1211.
- Branine M., Bazzicalupo A., Branco S., 2019. Biology and applications of endophytic insect-pathogenic fungi // PLoS Pathog. V. 15. № 7. https://doi.org/10.1371/journal.ppat.1007831
- Cherry A., Banito A., Djegui D., Lomer C., 2004. Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana // Int. J. Pest Manag. V. 50. № 1. Р. 67–73. https://doi.org/10.1080/09670870310001637426
- Choudhary D.K., Prakash A., Johri B.N., 2007. Induced systemic resistance (ISR) in plants: Mechanism of action // Indian J. Microbiol. V. 47. № 4. P. 289–297. https://doi.org/10.1007/s12088-007-0054-2
- Cito A., Barzanti G.P., Strangi A., Francardi V., Zanfini A., Dreassi E., 2016. Cuticle-degrading proteases and toxins as virulence markers of Beauveria bassiana (Balsamo) Vuillemin // J. Basic Microbiol. V. 56. P. 941–948. https://doi.org/10.1002/jobm.201600022
- Cord-Landwehr S., Melcher R.L.J., Kolkenbrock S., Moerschbacher B.M., 2016. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells // Sci. Rep. V. 6. № 6. https://doi.org/10.1038/srep38018
- Davis K.A., Sampson J.K., Panaccione D.G., 2020. Genetic reprogramming of the ergot alkaloid pathway of Metarhizium brunneum // Appl. Environ. Microbiol. V. 86. № 19. https://doi.org/10.1128/AEM.01251-20
- Fan Y., Liu X., Keyhani N.O., Tang G., Pei Y., et al., 2017. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death // Proc. Natl Acad. Sci. USA. V. 114. № 9. P. 1578–1586. https://doi.org/10.1073/pnas.1616543114
- Gabriel B.P., 1959. Fungus infection of insects via the alimentary tract // J. Invertebr. Pathol. V. 1. P. 319–330.
- Gao F.K., Dai C.C., Liu X.Z., 2010. Mechanisms of fungal endophytes in plant protection against pathogens // Afr. J. Microbiol. Res. V. 4. № 13. P. 1346–1351.
- Gennaro M., Gonthier P., Nicolotti G., 2003. Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in Northern Italy // J. Phytopathol. V. 151. № 10. P. 529–534. https://doi.org/10.1046/j.1439-0434.2003.00763.x
- Golo P.S., Gardner D.R., Grilley M.M., Takemoto J.Y., Krasnoff S.B., et al., 2014. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants // PLoS One. V. 9. № 8. https://doi.org/10.1371/journal.pone.0104946
- Gómez-Vidal S., Lopez-Llorca L.V., Jansson H.B., Salinas J., 2006. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi // Micron. V. 37. № 7. Р. 624–632. https://doi.org/10.1016/j.micron.2006.02.003
- Greenfield M., Gomez-Jimenez M.I., Ortiz V., Vega V.E., Kramer M., Parsa S., 2016. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation // Biol. Control. V. 95. № 2. P. 40–48. https://doi.org/10.1016/j.biocontrol.2016.01.002
- Grove J.F., Pople M., 1980. The insecticidal activity of beauvericin and the enniatin complex // Mycopathologia. V. 70. P. 103–105.
- Gurulingappa P., Sword G.A., Murdoch G., McGee P.A., 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta // Biol. Control. V. 55. № 1. P. 34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011
- Henk D.A., Vilgalys R., 2007. Molecular phylogeny suggests a single origin of insect symbiosis in the Pucciniomycetes with support for some relationships within the genus Septobasidium // Am. J. Bot. V. 94. № 9. P. 1515–1526.
- Hirano E., Koike M., Aiuchi D., Tani M., 2008. Pre-inoculationof cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew // Res. Bull. Obihiro Univ. V. 29. P. 82–94.
- Iida Y., Higashi Y., Nishi O., Kouda M., Maeda K., et al., 2023. Entomopathogenic fungus Beauveria bassiana-based bioinsecticide suppresses severity of powdery mildews of vegetables by inducing the plant defense responses // Front. Plant Sci. V. 14. P. 1–13. https://doi.org/10.3389/fpls.2023.1211825
- Jones K.D., 1994. Aspects of the biology and biological control of the European corn borer in North Carolina. PhD thesis. Raleigh: North Carolina State Univ. 127 p.
- Kabaluk J.T., Ericsson J.D., 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control // Agron. J. V. 99. P. 1377–1381. https://doi.org/10.2134/agronj2007.0017N
- Kamran M., Imran Q.M., Ahmed M.B., Falak N., Khatoon A., Yun B.-W., 2022. Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement // Cells. V. 11. № 20. https://doi.org/10.3390/cells11203292
- Kanaoka M., Isoga A., Murakosh S.I., Ichjnoe M., Suzuki A., Tamura S., 1978. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii // Agric. Biol. Chem. V. 42. P. 629–635.
- Kaushik H., Dutta P., 2016. Establishment of Metarhizium anisopliae, an entomopathogen as endophyte for biological control in tea // Res. Crops. V. 17. P. 375–387. https://doi.org/10.5958/2348-7542.2016.00063.2
- Khan A.L., Hamayun M., Khan S.A., Kang S.-M., Shinwari Z.K., et al., 2012. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress // World J. Microbiol. Biotechnol. V. 28. P. 1483–1494.
- Klieber J., Reineke A., 2016. The entomopathogenic Beauveria bassiana has epiphytic and endophytic activity against the tomato leafminer Tuta absoluta // J. Appl. Entomol. V. 140. № 8. P. 580–589. https://doi.org/10.1111/jen.12287
- Koroch A., Juliani H., Bischoff J., Lewis E., Bills G., et al., 2004. Examination of plant biotrophy in the scale insect parasitizing fungus Dussiella tuberiformis // Symbiosis. V. 37. P. 267–280.
- Kwaśna H., Szewczyk W., Behnke-Borowczyk J., 2016. Fungal root endophytes of Querqus robur subjected to flooding // Forest Pathol. V. 46. № 1. P. 35–46. https://doi.org/10.1111/efp.12212
- Larran S., Perello A., Simon M.R., Moreno V., 2002. Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves // World J. Microbiol. Biotechnol. V. 18. № 7. P. 683–686. https://doi.org/10.1023/A:1016857917950
- Lefort M.-C., McKinnon A.C., Nelson T.L., Glare T.R., 2016. Natural occurrence of the entomopathogenic fungi Beauveria bassiana as a vertically transmitted endophyte of Pinus radiata and its effect on above- and below-ground insect pests // New Zealand Plant Prot. V. 69. № 6. P. 68–77. https://doi.org/10.7287/peerj.preprints.1632v1
- Liu K., Ding X., Deng B., Chen W., 2009. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis // J. Ind. Microbiol. Biotechnol. V. 36. № 9. P. 1171–1177. https://doi.org/10.1007/s10295-009-0598-8
- Lopez D.C., Sword G.A., 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea) // Biol. Control. V. 89. Р. 53–60. http://dx.doi.org/10.1016/j.biocontrol.2015.03.010
- Martin R., Gazis R.O., Skaltsas D., Chaverri P., Hibbett D.S., 2015. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea // Mycologia. V. 107. № 2. P. 284–297. https://doi.org/10.3852/14-206
- McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R., 2017. Beauveria bassiana as an endophyte: А critical review on associated methodology and biocontrol potential // Biol. Control. V. 62. № 1. P. 1–17. https://doi.org/10.1007/s10526-016-9769-5
- Molnar I., Gibson D.M., Krasnoff S.B., 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi // Nat. Prod. Rep. V. 27. № 9. P. 1241–1275. https://doi.org/10.1039/C001459C
- Muvea A.M., Meyhöfer R., Subramanian S., Poehling H.-M., Ekesi S., Maniania N.K., 2014. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci // PLoS One. V. 9. № 9. https://doi.org/10.1371/journal.pone.0108242
- Nicoletti R., Becchimanzi A., 2020. Endophytism of Lecanicillium and Akanthomyces // Agriculture. V. 10. № 6. Art. 205. https://doi.org/10.3390/agriculture10060205
- Petrini O., Andrews J.H., Hirano S.S., 1991. Fungal Endophytes in Tree Leaves. Microbial Ecology of Leaves. N.-Y.: Springer. P. 179–197. https://doi.org/10.1007/978-1-4612-3168-4_9
- Pimentel I.C., Gabardo J., Poitevin C.G., Stuart A.K.D.C., Azevedo J.L., de., 2016. Incidence of endophytic fungi and occurrence of Beauveria and Paecilomyces in maize (Zea mays L.) under field and greenhouse conditions // Asian J. Microbiol. Biotechnol. Environ. Sci. V. 18. № 1. P. 47–53.
- Posada F., Vega F.E., 2005. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao) // Mycologia. V. 97. № 6. P. 1195–1200. https://doi.org/10.3852/mycologia.97.6.1195
- Posada F., Vega F.E., 2006. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) // Mycoscience. V. 47. № 5. P. 284–289. https://doi.org/10.1007/s10267-006-0308-6
- Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D., 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae) // J. Entomol. Sci. V. 44. № 4. P. 391–396. https://doi.org/10.18474/0749-8004-44.4.391
- Quandt C.A., Patterson W., Spatafora J.W., 2018. Harnessing the power of phylogenomics to disentangle the directionality and signatures of interkingdom host jumping in the parasitic fungal genus Tolypocladium // Mycologia. V. 10. № 1. P. 104–117. https://doi.org/10.1080/00275514.2018.1442618
- Quesada-Moraga E., Landa B.B., Muñoz-Ledesma J., Jiménez Díaz R.M., Santiago-Álvarez C., 2006. Endophytic colonization of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain // Mycopathologia. V. 161. № 2. P. 323–329. https://doi.org/10.5958/2348-7542.2016.00063.2
- Quesada-Moraga E., López-Díaz C., Landa B.B., 2014. The hidden habit of the entomopathogenic fungus Beauveria bassiana: First demonstration of vertical plant transmission // PLoS One. V. 9. № 2. https://doi.org/10.1371/journal.pone.0089278
- Quesada-Moraga E., Muñoz-Ledesma F.J., Santiago-Alvarez C., 2009. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales) // Environ. Entomol. V. 38. № 3. P. 723–730. https://doi.org/10.1603/022.038.0324
- Reddy P.V., Lam K.C., Belanger F.C., 1996. Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity // Plant Physiol. V. 111. № 4. P. 1209–1218.
- Resquín-Romero G., Garrido-Jurado I., Delso C., Ríos-Moreno A., Quesada-Moraga E., 2016. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects // J. Invertebr. Pathol. V. 136. P. 23–31. https://doi.org/10.1016/j.jip.2016.03.003
- Ríos-Moreno A., Carpio A., Garrido-Jurado I., Arroyo-Manzanares N., Lozano-Tovar M.D., Arce L., 2016. Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS // Biocontrol. Sci. Technol. V. 26. P. 1298–1311. https://doi.org/10.1080/09583157.2016.1195336
- Rondot Y., Reineke A., 2018. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects // Biol. Control. V. 116. P. 82–89. https://doi.org/10.1016/j.biocontrol.2016.10.006
- Rubini M.R., Silva-Ribeiro R.T., Pomella A.W.V., Maki C.S., Araújo W.L., et al., 2005. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and bio- logical control of Crinipellis perniciosa, causal agent of witches’ broom disease // Int. J. Biol. Sci. V. 1. P. 24–33. https://doi.org/10.7150/IJBS.1.24
- Sánchez Márquez S., Bills G.F., Zabalgogeazcoa I., 2007. The endophytic mycobiota of the grass Dactylis glomerata // Fungal Divers. V. 27. P. 171–195.
- Sánchez-Rodríguez A.R., Raya-Díaz S., Zamarreño A.M., García-Mina J.M., Del Campillo M.C., Quesada-Moraga E., 2018. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae // Biol. Control. V. 116. P. 90–102. https://doi.org/10.1016/j.biocontrol.2017.01.012
- Sayed S., El-Shehawi A., Al-Otaibi S. et al., 2020. Isolation and efficacy of the endophytic fungus, Beauveria bassiana (Bals.) Vuillemin on grapevine aphid, Aphis illinoisensis Shimer (Hemiptera: Aphididae) under laboratory conditions // Egypt. J. Biol. Pest Control. V. 30. Art. 38. https://doi.org/10.1186/s41938-020-00234-z
- Shrivastava G., Ownley B.H., Augé R.M., Toler H., Dee M., et al., 2015. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect // Symbiosis. V. 65. № 2. P. 65–74. https://doi.org/10.1007/s13199-015-0319-1
- Spatafora J.W., Sung G., Sung J., Hywel-Jones N.L., White J.F., 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes // Mol. Ecol. V. 16. № 8. P. 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x
- Steinhaus E.A., 1949. Principles of Insect Pathology. Toronto: McGraw-Hill Book Company, Inc. 757 p.
- Steinwender B.M., Enkerli J., Widmer F., Eilenberg J., Kristensen H.L., et al., 2015. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity // J. Invertebr. Pathol. V. 132. P. 142–148. https://doi.org/10.1016/j.jip.2015.09.007
- Suh S.O., Noda H., Blackwell M., 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage // Mol. Biol. Evol. V. 18. № 6. P. 995–1000. https://doi.org/10.1093/oxfordjournals.molbev.a003901
- Sung J.M., Lee J.O., Humber R.A., Sung G.H., Shrestha B., 2006. Cordyceps bassiana and production of stromata in vitro showing Beauveria аnamorph in Korea // Mycobiology. V. 34. № 1. P. 1–6. https://doi.org/10.4489/MYCO.2006.34.1.001
- Tian X.L., Cao L.X., Tan H.M., Zeng Q.G., Jia Y.Y., et al., 2004. Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro // World J. Microbiol. Biotechnol. V. 20. № 3. P. 303–309. https://doi.org/10.1023/B: WIBI.0000023843.83692.3f
- Unterseher M., Persoh D., Schnittler M., 2013. Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host // Fungal Divers. V. 60. P. 43–54. https://doi.org/10.1007/s13225-013-0222-0
- Vega E.F., Posada F., Aime М.С., Pava-Ripoll М., Infante F., et al., 2008. Entomopathogenic fungal endophytes // Biol. Control. V. 46. № 1. P. 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
- Vega F.E., Simpkins A., Aime M.C., Posada F., Peterson S.W., et al., 2010. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto-Rico // Fungal Ecol. V. 3. № 1. P. 122–138. https://doi.org/10.1016/j.funeco.2009.07.002
- Vidal S., Jaber L., 2015. Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control // Curr. Sci. V. 109. № 1. P. 46–54.
- Wagner B.L., Lewis L.C., 2000. Colonization of corn, Zea mays, by thе entomopathogenic fungus Beauveria bassiana // Appl. Environ. Microbiol. V. 66. № 8. P. 3468–3473. https://doi.org/10.1128/AEM.66.8.3468-3473.2000
- Wang C., St Leger R.J., 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants // Eukaryot. Cell. V. 6. P. 808–816. https://doi.org/10.1128/EC.00409-06
- Wang Q., Xu L., 2012. Beauvericin, a bioactive compound produced by fungi: A short review // Molecules. V. 17. P. 2367–2377. https://doi.org/10.3390/molecules17032367
- Wilson D., 1995. Endophyte: The evolution of a term and clarification of its use and definition // Oikos. V. 73. P. 274–276.
- Ye W., Murata Y., 2016. Microbe associated molecular pattern signaling in guard cells // Front. Plant Sci. V. 7. https://doi.org/10.3389/fpls.2016.00583
- Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung T., Bors W., 2004. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes // Proc. Natl. Acad. Sci. USA. V. 101. P. 15811–15816. https://doi.org/10.1073/pnas.0404536101
- Zhang W., Zhang X., Li K., Wang C., Cai L., Zhuang W., 2018. Introgression and gene family contraction drive the evolution of lifestyle and host shifts of hypocrealean fungi // Mycology. V. 9. P. 176–188. https://doi.org/10.1080/21501203.2018.1478333
补充文件
