The phenomenon of unstable sexual dimorphism in rodent populations: Does sexual dimorphism increase in pessimal environmental conditions?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In order to study the phenomenon of unstable sexual dimorphism (USD) in syntopic populations of sympatric rodent species (Bank vole, Pigmy wood mouse), the variability of the size and shape of the mandible of males and females from five localities of the floodplain forests of the Sakmara, Samara and Ural rivers (Southern Urals) was compared. In age-homogeneous samples of underyearlings of both sexes, sexual dimorphism (SD) was compared by centroid size (SSD) and mandible shape (ShSD) using geometric morphometrics. The favorable habitat conditions were indirectly assessed by the proportion of species in the catch and their abundance per 100 catches per day, and the fatness index (IF, %). SSD – size sexual dimorphism was often, but not always, manifested in favorable conditions for the species (high abundance and proportion of species, and IF) and was not expressed in pessimal conditions (low abundance and proportion of species, and IF), whereas ShSD – shape sexual dimorphism, on the contrary, was expressed to the greatest extent in pessimal conditions. Negative regression relationships were found that are similar for both species, and for the entire sample set, significant negative coefficients of linear correlation were found between the values of the ShSD (according to Mahalanobis distances, D) and the species' shares in catches (r = −0.76), as well as their abundance (r = −0.78) and fatness indices (r = −0.85), this reflects the strengthening of the ShSD in pessimal conditions for development. Since the ShSD of mandibles in rodent species is regularly high in adverse conditions, it can be used for environmental monitoring purposes as an indirect indicator of a rapid morphogenetic response to pessimal conditions and as one of the signs of the onset of local biotic crisis phenomena after exposure to climatic, anthropogenic and/or biotic factors.

作者简介

A. Vasil'ev

Institute of Plant and Animal Ecology, Ural Branch, RAS

Email: vag@ipae.uran.ru
8 Marta Str., 202, Yekaterinburg, 620144 Russia

I. Vasil'eva

Institute of Plant and Animal Ecology, Ural Branch, RAS

8 Marta Str., 202, Yekaterinburg, 620144 Russia

Yu. Gorodilova

Institute of Plant and Animal Ecology, Ural Branch, RAS

8 Marta Str., 202, Yekaterinburg, 620144 Russia

M. Chibiryak

Institute of Plant and Animal Ecology, Ural Branch, RAS

8 Marta Str., 202, Yekaterinburg, 620144 Russia

参考

  1. Большаков В.Н., Васильев А.Г., Васильева И.А., Городилова Ю.В., Чибиряк М.В., 2015. Сопряженная биотопическая изменчивость ценопопуляций симпатрических видов грызунов на Южном Урале // Экология. № 4. С. 265–271.
  2. Васильев А.Г., 2021. Концепция морфониши и эволюционная экология. М.: Т-во науч. изд. КМК. 315 с.
  3. Васильев А.Г., Большаков В.Н., Васильева И.А., 2020а. Внутри- и межпопуляционная одонтологическая изменчивость красно-серой полевки (Craseomys rufocanus) и принцип компенсации Ю.И. Чернова // Экология. № 1. С. 5–15.
  4. Васильев А.Г., Васильева И.А., Городилова Ю.В., Добринский Н.Л., 2017. Принцип компенсации Ю.И. Чернова и влияние полноты состава сообщества грызунов на изменчивость популяции рыжей полёвки (Clethrionomys glareolus) на Среднем Урале // Экология. № 2. С. 116–125.
  5. Васильев А.Г., Васильева И.А., Городилова Ю.В., Чибиряк М.В., 2020б. Сопряженная хронографическая изменчивость морфофункциональных признаков в ценопопуляциях двух симпатрических видов грызунов // Экология. № 4. С. 284–297.
  6. Васильев А.Г., Васильева И.А., Шкурихин А.О., 2018. Геометрическая морфометрия: от теории к практике. М.: Т-во науч. изд. КМК. 471 с.
  7. Жерихин В.В., 2003. Избранные труды по палеоэкологии и филоценогенетике. М.: Т-во науч. изд. КМК. 542 с.
  8. Павлинов И.Я., Микешина Н.Г., 2002. Принципы и методы геометрической морфометрии // Журн. общ. биологии. Т. 63. № 6. С. 473–493.
  9. Правдин И.Ф., 1966. Руководство по изучению рыб. М.: Пищепромиздат. 376 с.
  10. Шварц С.С., Смирнов В.С., Добринский Л.Н., 1968. Метод морфофизиологических индикаторов в экологии наземных позвоночных. Свердловск: АН СССР. 387 с.
  11. Abramov A.V., Tumanov I.L., 2003. Sexual dimorphism in the skull of the European mink Mustela lutreola from NW part of Russia // Acta Theriol. V. 48. P. 239–246.
  12. Aguirre W.E., Bell M.A., 2012. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment // Biol. J. Linn. Soc. V. 105. P. 817–831.
  13. Alves S.M., Belo M., 2002. Morphometric variations in the house fly, Musca domestica (L.) with latitude // Genetica. V. 115. P. 243–251.
  14. Blackenhorn W.U., Stillwell R.C., Young K.A., Fox C., Ashton K.G., 2006. When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? // Evolution. V. 60. P. 2004–2011.
  15. Bonduriansky R., 2007. The evolution of condition-dependent sexual dimorphism // Am. Nat. V. 169. P. 9–19.
  16. Bošković A., Rando O.J., 2018. Transgenerational epigenetic inheritance // Ann. Rev. Genet. V. 52. P. 21–41.
  17. Burggren W., 2016. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives // Biology. V. 5. № 24. P. 2–22.
  18. Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringland R.M., Palmer T.M., 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction // Sci. Adv. V. 1. № 5. http://doi.org/10.1126/sciadv.1400253
  19. Cohen J., 1992. A power primer // Psychol. Bull. V. 112. № 1. P. 155–159. http://doi.org/10.1037/0033-2909.112.1.155
  20. Cornwell W.K., Schwilk D.W., Ackerly D.A., 2006. A trait-based test for habitat filtering: Convex hull volume // Ecology. V. 87. P. 1465–1471.
  21. Darwin Ch.R., 1871. The descent of man, and selection in relation to sex. V. I–II. L.: John Murray, Albemarle street. 423 p., 475 p.
  22. De Lisle S.P., Schrieber S.J., Bolnick D.I., 2022. Complex community-wide consequences of consumer sexual dimorphism // J. Anim. Ecol. V. 91. P. 958–969.
  23. Dickins T.E., Rahman Q., 2012. The extended evolutionary synthesis and the role of soft inheritance in evolution // Proc. R. Soc. B. V. 279. P. 2913–2921.
  24. Donelan S.C., Hellmann J.K., Bell A.M. et al., 2020. Transgenerational plasticity in human-altered environments // Trends Ecol. Evol. V. 35. № 2. P. 115–124.
  25. Duncan E.J., Gluckman P.D., Dearden P.K., 2014. Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype? // J. Exp. Zool. B. Mol. Dev. Evol. V. 322. P. 208–220.
  26. Fairbairn D.J., 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females // Ann. Rev. Ecol. Syst. V. 28. № 1. P. 659–687.
  27. Gálvez-López E., Cox P.G., 2022. Mandible shape variation and feeding biomechanics in minks // Sci. Rep. V. 12. Art. 4997. https://doi.org/10.1038/s41598-022-08754-4
  28. Gálvez-López E., Kilbourne B., Cox P.G., 2021. Cranial shape variation in mink: Separating two highly similar species // J. Anat. V. 240. № 2. P. 210–225.
  29. Gittleman J.L., Valkenburgh B., van, 1997. Sexual dimorphism in the canines and skulls of carnivores: Effects of size, phylogeny, and behavioral ecology // J. Zool. V. 242. P. 97–117.
  30. Hammer Ø., 2009. New statistical methods for detecting point alignments // Comput. Geosci. V. 35. P. 659–666.
  31. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis // Palaeontol. Electron. V. 4. № 1. P. 1–9.
  32. Hangartner S., Sgrò C.M., Connallon T., Booksmythe I., 2022. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data // Ecol. Lett. V. 25. P. 1550–1565.
  33. Hedrick A.V., Temeles E.J., 1989. The evolution of sexual dimorphism in animals: Hypotheses and tests // Trends Ecol. Evol. V. 4. P. 136–138.
  34. Hendry A.P., Kelly M.L., Kinnison M.T., Reznick D.L., 2006. Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of guppies // J. Evol. Biol. V. 19. P. 741–754.
  35. Jablonka E., Raz G., 2009. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. V. 84. P. 131–176.
  36. Jones M.E., Sheard C., 2023. The macroevolutionary dynamics of mammalian sexual size dimorphism // Proc. R. Soc. B. V. 290. https://doi.org/10.1098/rspb.2023.1211
  37. Klingenberg C.P., 2011. MorphoJ: An integrated software package for geometric morphometrics // Mol. Ecol. Resour. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  38. Laland K.N., Uller T., Feldman M.W., Sterelny K., et al., 2015. The extended evolutionary synthesis: Its structure, assumptions and predictions // Phil. Trans. R. Soc. B. Biol. Sci. V. 282. https://doi.org/10.1098/rspb.2015.1019
  39. Lovich J.E., Gibbons J.W., 1992. A review of techniques for quantifying sexual size dimorphism // Growth Dev. Aging. V. 56. P. 269–281.
  40. Loy A., Spinosi O., Cardini R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): The role of size and shape in sexual dimorphism and interspecific differentiation // Italian J. Zool. V. 71. P. 27–35.
  41. Mayfield M.M., Boni M.F., Ackerly D.D., 2009. Traits, habitats, and clades: Identifying traits of potential importance to environmental filtering // Am. Nat. V. 174. P. E1–E22.
  42. Michalko R., Pekár S., 2015. Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae) // Ecol. Entomol. V. 40. P. 22–33.
  43. Oudin M.J., Bonduriansky R., Rundle H.D., 2015. Experimental evidence of condition-dependent sexual dimorphism in the weakly dimorphic antler fly Protopiophila litigata (Diptera: Piophilidae) // Biol. J. Linn. Soc. V. 116. P. 211–220.
  44. Palmer A.R., 1994. Fluctuating asymmetry analyses: A primer // Developmental Instability: Its Origins and Implications / Ed. Markow T.A. Dordrecht: Kluwer. P. 335–364.
  45. Parmesan C., 2006. Ecological and evolutionary responses to recent climate change // Ann. Rev. Ecol. Evol. Syst. V. 37. P. 637–669.
  46. Ralls K., 1977. Sexual dimorphism in mammals: Avian models and unanswered questions // Am. Nat. V. 111. № 981. P. 917–938.
  47. Rensch B., 1950. Die Abhängigkeit der relativen Sexual differenz von Korpergrosse // Bonn Zool. Bei. Bd. 1. S. 58–69.
  48. Rijssel J.C., van, Witte F., 2013. Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years // Evol. Ecol. V. 27. P. 251–267.
  49. Rohlf F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces // J. Classif. V. 16. P. 197–223.
  50. Rohlf F.J., 2017a. TpsUtil, file utility program, version 1.74. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  51. Rohlf F.J., 2017b. TpsDig2, digitize landmarks and outlines, version 2.30. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  52. Rohlf F.J., Slice D., 1990. Extension of the Procrustes method for the optimal superimposition of landmarks // Syst. Zool. V. 39. № 1. P. 40–59.
  53. Salamin N., Wüest R.O., Lavergne S. et al., 2010. Assessing rapid evolution in a changing environment // Trends Ecol. Evol. V. 25. № 12. P. 692–698.
  54. Sheets H.D., Zelditch M.L., 2013. Studying ontogenetic trajectories using resampling methods and landmark data // Hystrix. V. 24. № 1. P. 67–73.
  55. Thompson J.N., 1994. The Coevolutionary Process. Chicago: Univ. Chicago Press. 376 p.
  56. Trivers R.L., 1972. Parental investment and sexual selection // Sexual Selection and the Descent of Man, 1871–1971 / Ed. Campbell B. Chicago: Aldine. P. 136–179.
  57. Waddington C.H., 1942. Canalization of development and the inheritance of acquired characters // Nature. V. 150. P. 563–565.
  58. Wang Y., Qiao Z., Mao L., Lib F., et al., 2022. Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically // PNAS. V. 119. № 13. Art. e2121822119. https://doi.org/10.1073/pnas.2121822119
  59. Zakharov V.M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations // Acta Zool. Fenn. V. 191. P. 7–30.
  60. Zelditch M.L., Mezey J., Sheets H.D., et al., 2006. Developmental regulation of skull morphology II: Ontogenetic dynamics of covariance // Evol. Develop. V. 8. № 1. P. 46–60.
  61. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L., 2004. Geometric Morphometrics for Biologists: A Primer. N.-Y.: Elsevier Acad. Press. 437 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025