Comparison of the catalytic properties of Pt and Co cathodes for the nitrite reduction reaction to ammonia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrochemical reaction reduction of nitrites (NO2−RR) in a neutral aqueous electrolyte is studied, which has important applications both for future ammonia synthesis processes and for effective wastewater and agricultural wastewater treatment. The catalytic activity is compared (the results of the Faradaic efficiency and the yield rate of ammonia are obtained) for noble (platinum) and non-noble (cobalt) metals. Metallic polycrystalline platinum and cobalt serve as electrocatalyst. The surface of the catalysts is analyzed using SEM and light microscopy. The method of linear voltammetry is used to preliminarily identify the potential of ammonia synthesis and estimate the synthesis current density. The values of Faradaic efficiency (FE) and the yield rate of ammonia release are obtained for the five selected values of current densities (J). It is found that the cobalt cathode is more efficient (FE ≈ 99%, yield rate (NH3) = 2.4 mmol h–1 cm–2), which exceeds the values for the platinum cathode ((FE = 88.1%, yield rate (NH3) = 0.4 mmol h–1 cm–2). The electrochemically active surface (ECSA) of the electrocatalysts is determined. The explanation of such activity of catalysts is given according to the results of the work that demonstrate that a non-noble metal cathode can be more effective for NO2−RR.

Full Text

Restricted Access

About the authors

I. I. Kuznetsova

M. V. Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

O. K. Lebedeva

M. V. Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

D. Y. Kultin

M. V. Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

L. M. Kustov

M. V. Lomonosov Moscow State University; N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: lmkustov@mail.ru

M. V. Lomonosov Moscow State University, Department of Chemistry

Russian Federation, Moscow, 119991; Moscow, 119991

References

  1. Makepeace J.W., He T., Weidenthaler C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 7746. https://doi.org/10.1016/j.ijhydene.2019.01.144
  2. John J., MacFarlane D.R., Simonov A.N. // Nat. Catal. 2023. V. 6. P. 1125. https://doi.org/10.1038/s41929-023-01060-w
  3. Lebedeva O., Kultin D., Каlenchuk A., Кustov L. // Curr. Opin. Electrochem. 2023. V. 38. P. 101207. https://doi.org/10.1016/j.coelec.2022.101207
  4. Imamura K., Kubota J. // Sustainable Energy Fuels. 2019. V. 3. Р. 1406. https://doi.org/10.1039/C9SE00049F.
  5. Shao J., Jing H., Wei P. et al. // Nat. Energy. 2023. V. 8. Р. 1273. https://doi.org/10.1038/s41560-023-01386-6
  6. Murphy E., Liu Y., Matanovic I. et al. // Nat. Commun. 2023. V. 14. Р. 4554. https://doi.org/10.1038/s41467-023-40174-4
  7. Bai L., Franco F., Timoshenko J. et al. // J. Am. Chem. Soc. 2024. V. 146. Р. 9665. https://doi.org/10.1021/jacs.3c13288
  8. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
  9. Kuznetsova I., Lebedeva O., Kultin D. et al. // Int. J. Mol. Sci. 2024. V. 25. Р. 7089. https://doi.org/10.3390/ijms25137089
  10. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
  11. Petrii O.A., Safonova T.Ya. // J. Electroanal. Chem. 1992. V. 331. Р. 897. https://doi.org/10.1016/0022-0728(92)85013-S
  12. Xiang J., Qiang C., Shang S. et al. // Adv. Funct. Materials. 2024. Р. 2401941. https://doi.org/10.1002/adfm.202401941
  13. Zhao H., Xiang J., Sun Z. et al. // ACS Sustainable Chem. Eng. 2024. V. 12. Р. 2783. https://doi.org/10.1021/acssuschemeng.3c07388
  14. Wang F., Xiang J., Zhang G. et al. // Nano Res. 2024. V. 17. Р. 3660. https://doi.org/10.1007/s12274-023-6261-2
  15. Wang F., Zhao H., Zhang G. et al. // Adv. Funct. Materials. 2024. V. 34. Р. 2308072. https://doi.org/10.1002/adfm.202308072
  16. Wang F., Shang S., Sun Z. et al. // Chem. Eng. J. 2024. V. 489. Р. 151410. https://doi.org/10.1016/j.cej.2024.151410
  17. Xiang J., Zhao H., Chen K. et al. // J. Colloid Interface Sci. 2024. V. 653. Р. 390. https://doi.org/10.1016/j.jcis.2023.09.095
  18. Xiang J., Zhao H., Chen K. et al. // Ibid. 2024. V. 659. Р. 432. https://doi.org/10.1016/j.jcis.2024.01.013
  19. Wan Y., Du W., Chen K. et al. // Ibid. 2023. V. 652. Р. 2180. https://doi.org/10.1016/j.jcis.2023.09.071
  20. Wu T., Zhang F., Wang J. et al. // Dalton Trans. 2024. V. 53. Р. 877. https://doi.org/10.1039/D3DT03808D
  21. Li Y., Ouyang L., Chen J. et al. // J. Colloid Interface Sci. 2024. V. 663. Р. 405. https://doi.org/10.1016/j.jcis.2024.02.153
  22. Qu Y., Guo Y., Chu K. // Inorg. Chem. 2024. V. 63. Р. 78. https://doi.org/10.1021/acs.inorgchem.3c04194
  23. Zhang Y., Wan Y., Liu X. et al. // iScience. 2023. V. 26. Р. 107944. https://doi.org/10.1016/j.isci.2023.107944
  24. Dima G.E., De Vooys A.C.A., Koper M.T.M. // J. Electroanal. Chem. 2003. V. 554–555. Р. 15. https://doi.org/10.1016/S0022-0728(02)01443-2
  25. De Groot M.T., Koper M.T.M. // J. Electroanal. Chem. 2004. V. 562. Р. 81. https://doi.org/10.1016/j.jelechem.2003.08.011
  26. Lebedeva O., Zakharov V., Kuznetsova I. et al. // Chem. – Eur. J. 2024. V. 30. Р. e202402075. https://doi.org/10.1002/chem.202402075
  27. Adalder A., Mitra K., Barman N. et al. // ChemRxiv. 2024. https://doi.org/10.26434/chemrxiv-2024-v8chs

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical images of the surface of platinum (a–c) and cobalt (g–e) working electrodes at different magnifications.

Download (914KB)
3. Fig. 2. Scanning electron microscopy images of the surface of platinum (a) and cobalt (b) working electrodes.

Download (598KB)
4. Fig. 3. Potentiodynamic curves obtained for a platinum electrode at a potential scan rate of 50 mV s-1 in a background neutral electrolyte in the absence and presence of nitrite (a) and an enlarged fragment indicating the selected potential values ​​(b).

Download (260KB)
5. Fig. 4. Faraday efficiency (a) and NH3 yield rate (b) at different working electrode current densities.

Download (330KB)
6. Fig. 5. Measurement of the electrochemically active surface: double-layer capacitance (a), cyclic potentiodynamic curves at different scan rates for calculating the double-layer capacitance of platinum (b) and cobalt (c) working electrodes.

Download (403KB)

Copyright (c) 2025 Russian Academy of Sciences