Vapor–liquid equilibrium measurement of methanol–chloroform–tetrahydrofuran and methanol–chloroform–tetrahydrofuran–dimethyl sulfoxide mixtures at 101.32 kPa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The vapor-liquid equilibrium of methanol-chloroform-tetrahydrofuran mixtures of different composition and methanol-chloroform-tetrahydrofuran-dimethyl sulfoxide mixtures with different content of dimethyl sulfoxide at 101.32 kPa is studied experimentally. Experimental and calculated values of relative volatility of substances in four-component mixtures are compared. The results of extractive rectification of ternary mixtures on the basis of experimental and calculated data obtained by the NRTL model are predicted.

Full Text

Restricted Access

About the authors

V. I. Zhuchkov

MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies

Email: raevalentina1@gmail.com
Russian Federation, Moscow

V. M. Raeva

MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies

Author for correspondence.
Email: raevalentina1@gmail.com
Russian Federation, Moscow

D. A. Ryzhkin

MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies

Email: raevalentina1@gmail.com
Russian Federation, Moscow

References

  1. Фролкова А.К. Разделение азеотропных смесей. Физико-химические основы и технологические приемы. М.: ВЛАДОС, 2010. 192 с. [Frolkova A.K. Separation of azeotropic mixtures. Physicochemical fundamentals and technological methods. / Moscow.: Gumanit. Centr VLADOS, 2010. 192 p.]
  2. Benyounes Н., Frolkova A.K. // Chem. Eng. Communications. 2010. V. 197. № 7. P. 901. https://doi.org/10.1080/00986440903088561
  3. Frolkova A.K., Frolkova A.V., Raeva V.M. et al. // Fine Chemical Technologies. 2022. V. 17. № 2. P. 87. [Фролкова А.К., Фролкова А.В., Раева В.М. и др. // Тонкие химические технологии. 2022. T. 17. № 2. C. 87.] https://doi.org/10.32362/2410-6593-2022-17-2-87-106
  4. Gerbaud V., Rodríguez-Donis I., Hegely L. et al. // Chem. Eng. Res. Des. 2019. V. 141. P. 229. https://doi.org/10.1016/j.cherd.2018.09.020
  5. Kossack S., Kraemer K., Gani R. et al. // Chem. Eng. Res. Des. 2008. V. 86. № 7. P. 781. https://doi.org/10.1016/j.cherd.2008.01.008
  6. Berg L., Yeh An-I., Ratanapupech P. // Chem. Eng. Communications. 1985. V. 39. P. 193. https://doi.org/10.1080/00986448508911670
  7. Berg L., Yeh An-I. // Chem. Eng. Communications. 1986. V. 48. P. 93. https://doi.org/10.1080/009864486089117796
  8. Жучков В.И., Рыжкин Д.А., Раева В.М. // ТОХТ. 2023. Т. 57. № 1. С. 125. https://doi.org/10.31857/S0040357123010153 [Zhuchkov V.I., Ryzhkin D.A., Raeva V.M. // Theor.Found.Chem.Eng. 2023. V. 57. № 1. P. 119. https://doi.org/10.1134/S0040579523010153]
  9. Misikov G., Trofimova M., Prikhodko I. // Chemistry. 2023. V. 5. № 4. P. 2542–2565. https://doi.org/10.3390/chemistry5040165
  10. Junhu Wu, Dehua Xu, Xiushan Yang et al. // J. Chem. Eng. Data. 2023. V. 68. № 3. 633. https://doi.org/10.1021/acs.jced.2c00718
  11. Уэйлес С. Фазовые равновесия в химической технологии: В 2-х ч. Ч. 1. М.: Мир, 1989. 664 с. [Walas S. Phase equilibria in chemical engineering. Butterworth-Heinemann. 1985. 671 p.]
  12. Myul’khi E.P., Khristenko M.S., Andryukhova M.V. // Russ. J. Appl. Chem. 2006. V. 79. № 7. P. 1076. [Мюльхи Е.П., Христенко М.С., Андрюхова М.В. // Журн. прикл. химии. 2006. Т. 79. № 7. С. 1086.] https://doi.org/10.1134/S1070427206070068
  13. Анохина Е.А., Шлейникова Е.Л., Тимошенко А.В. // Тонкие химические технологии. 2013. Т. 8. № 2. С. 18. [Anokhina E.A., Shleynikova E.L., Timoshenko A.V. // Fine Chemical Technologies. 2013. V. 8. № 2. P. 18.]
  14. Раева В.М., Капранова А.С. // Хим. промышленность сегодня. 2015. № 3. С. 33.
  15. Cignitti S., Rodriguez-Donis I., Abildskov J. et al. // Chem. Eng. Res. Des. 2019. V. 147. 721. https://doi.org/10.1016/j.cherd.2019.04.038
  16. Фролкова А.В., Фертикова В.Г., Рытова Е.В. и др. // Тонкие химические технологии. 2021. Т. 16. № 6. С. 457. [Frolkova A.V., Fertikova V.G., Rytova E.V. et al. // Fine Chemical Technologies. 2021. V. 16. № 6. P. 457.]
  17. Долматов Б.Б., Тимошенко А.В., Волков А.Г. и др. // Тонкие химические технологии. 2009. Т. 4. № 5. С. 60. [Dolmatov B.B., Timoshenko A.V., Volkov A.G. et al. // Fine Chemical Technologies. 2009. V. 4. № 5. P. 60.]
  18. Анохина Е.А., Грачева И.М., Акишин А.Ю. и др. // Тонкие химические технологии. 2017. Т. 12. № 5. С. 34. [Anokhina E.А., Gracheva I.M., Akishin A.Yu. et al. // Fine Chemical Technologies. 2017. Т. 12. № 5. P. 34.] https://doi.org/10.32362/2410-6593-2017-12-5-34-46
  19. Bedretdinov F., Chelyuskina T.V. [сайт]. – URL: https://www.researchgate.net/publication/379269724 (дата обращения: 28.03.2024) – Текст: электронный. https://doi.org/ 10.13140/RG.2.2.13352.17923/3
  20. Raeva V.M., Sukhov D.I. // Fine Chemical Technologies. 2018. V. 13. № 3. P. 30. [Раева В.М., Сухов Д.И. // Тонкие химические технологии. 2018. Т. 13. № 3. С. 30.] https://doi.org/10.32362/24106593-2018-13-3-30-40
  21. Yunfei Song, Yuezhan Du, Ruyue Wang et al. // J. Chem. Eng. Data. 2018. V. 63. № 2. P. 395. https://doi.org/10.1021/acs.jced.7b00802
  22. Yunfei Song, Yuezhan Du, Ruyue Wang et al. // J. Chem. Eng. Data. 2020. V. 65. № 7. Р. 3428. https://doi.org/10.1021/acs.jced.9b01162
  23. Li Q., Liu P., Cao L. et al. // Fluid Phase Equilib. 2013. V. 360. P. 439. https://doi.org/10.1016/j.fluid.2013.09.060
  24. Bushmakin I.N., Kish I.N. // Zh. Prikl. Khim. 1957. V. 30. P. 200.
  25. Коган В.Б. Азеотропная и экстрактивная ректификация / Л.: Химия, 1971. 432 с.
  26. Огородников С.К., Лестева Т.М., Коган В.Б. Азеотропные смеси. Справочник / Под ред. В.Б. Когана. Л.: Химия, 1971. 848 с.
  27. Сусарев М.П., Кудрявцева Л.С., Эйзен О.Г. Тройные азеотропные системы. Таллин: Валгус, 1973. 143 с.
  28. Solimo H.N., Gomez Marigliano A.C. // J. Solution Chem. 1993. V. 22. P. 951.
  29. Campo J.M., Gramling L.G. // J. of the American Pharmaceutical Association (Scientific Ed.). 1953. V. 42. № 12. P. 747. https://doi.org/10.1002/jps.3030421213
  30. Standard Reference Database of National Institute of Standards and Technology (NIST). 2022. № 69. https://doi.org/10.18434/T4D303
  31. Philippe R., Jambon C., Clechet P. // J. Chem. Thermodyn. 1973. V. 5. P. 31.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the vapor pressure diagram of the methanol (M) – chloroform (CHF) – tetrahydrofuran (THF) system at 101.32 kPa.

Download (125KB)
3. Fig. 2. Compositions of liquid mixtures methanol (M) – chloroform (CHF) – tetrahydrofuran (THF).

Download (130KB)
4. Fig. 3. Comparison of relative volatilities of components in methanol (1) – chloroform (2) – tetrahydrofuran (3) – dimethyl sulfoxide (4) mixtures at 101.32 kPa. Three-component mixtures: a – No. 1, b – No. 5, c – No. 9, d – No. 13, e – No. 17.

Download (290KB)

Copyright (c) 2025 Russian Academy of Sciences