Study of protein-dust aggregates formation in a solution of serum albumin containing dust from a mining and metallurgy enterprise

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Nanoparticles contained in airborne aerosols are a significant risk factor and require a comprehensive approach to studying and eliminating the gap in knowledge about interaction with biological media. The aim of the work is to study the dynamics of the interaction of industrial dust with serum proteins and to develop a new, integrated approach to assessing exposure and the impact of environmental components on health. The paper shows the results of studies of the interaction of isolated fractions of industrial dust with a solution of serum albumin using diffraction grating and molecular absorption spectroscopy, and its elemental composition is determined by the ICP-MS method. It was found that after 24 hours of exposure to industrial dust in a protein solution, protein-dust particles agglomerate, followed by their decomposition by 744 hours and the particle size approaches the initial one. An inverse correlation was found between the specific surface area of the particles, their diffusion coefficient and size. The results obtained by the diffraction grating method are in good agreement with the qualitative characteristics obtained by molecular absorption spectroscopy. The ICP-MS method has recorded the complex dynamics of the redistribution of elements between phases over time. An assumption is made about the interaction of the analyzed elements with the protein, leading to the formation of nanoscale aggregates and the binding of metals, which is important for understanding their biological effects. Experimental data can be used to determine the standards of air aerosol pollution.

Sobre autores

T. Shtin

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: sergey.shtin@urfu.ru
Yekaterinburg, Russia

I. Kholmanskikh

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Yekaterinburg, Russia

S. Shtin

Federal State Autonomous Educational Institution of Higher Education “Ural Federal University named after the first President of Russia B.N. Yeltsin”

Yekaterinburg, Russia

Bibliografia

  1. Азаров ВН, Тертишников ИВ, Маринин НА(2012) Нормирование РМ10и РМ2,5как социальные стандарты качества жизни в районах расположения предприятий стройиндустрии. Жилищноестроительство3: 20–22. [Azarov VN, Tertishnikov IV, Marinin NA(2012) Rationing of RM10 and PM2.5 as social standards of quality of life in the areas where construction industry enterprises are located. Housing construction 3: 20–22. (In Russ)].
  2. Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T(2023) Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMCPublicHealth23: 1059. https://doi.org/10.1186/s12889-023-15958-4
  3. Ивлиева АЛ, Зиньковская И, Петрицкая ЕН, Рогаткин ДА(2022) Наночастицы и наноматериалы — неизбежные современные токсичные агенты. Обзор. Часть 1. Области применения наночастиц и промышленная нанотоксикология. Экология человека 29: 73–88.[Ivlieva AL, Zin'kovskaya I, Petritskaya EN, Rogatkin DA(2022)Nanoparticlesandnanomaterialsareunavoidablemoderntoxicagents.Review.Part1.Applicationsofnanoparticlesandindustrialnanotoxicology.Humanecology 23: 73–88.(In Russ)]. https://doi.org/10.17816/humeco10015
  4. Ermolin MS, Fedotov PS, Dzhenloda RK, Ivaneev AI, Burkat TV, Burkat VS(2020) Fractionation, Characterization, and Analysis of Nano- and Microparticles in the Estimation of the Contribution of a Metallurgical Enterprise to the Pollution of Urban Dust. J Anal Chem 75: 1227–1235. https://doi.org/10.1134/S1061934820090105
  5. Samal P, Satpathy S, Panigrahi LL, Jha S, Arakha M(2025) Exploring the intricacies of protein–nanoparticle interaction and its implications in chronic diseases: a comprehensive review. NanoscaleHoriz10: 1615–1641. https://doi.org/10.1039/D5NH00076A
  6. Сокол НВ(2006) Оптические свойства растворов белков, содержащих ионы тяжелых металлов: дисс. … канд. физ-мат. наук: 03.00.02. — М. 173.[Sokol NV(2006) Optical properties of protein solutions containing heavy metal ions: diss. ... candidate of Physical and Mathematical Sciences: Moscow: 173 (In Russ)].
  7. Tikhonova TN, Petrova GP, Petrusevich YM, Fedorova KV, Kashin VV(2011) Formation of dipole nanoclusters in blood serum protein solutions containing europium and potassium ions.Moscow university physics bulletin 66: 190–195. https://doi.org/10.3103/S0027134911020172
  8. Gibizova VV, Sergeeva IA, Petrova GP, Priezzhev AV, Khlebtsov NG(2011) Interaction of albumin and γ-globulin molecules with gold nanoparticles in water solutions. Moscow university physics bulletin 66: 449–452. https://doi.org/10.3103/S0027134911050067
  9. Samsonova YS, Priezzhev AV, Lugovtsov AE, Petrova GP, Gibizova VV, Ye YS, Su TH, Perevedentseva EV, Cheng CL (2012) Investigation of interaction of albumin molecules with diamond nanoparticles in aqueous solutions by dynamic light scattering.Quantum electron 42: 484–489. https://doi.org/10.1070/QE2012v042n06ABEH014903
  10. Zar'kov SV, Avetisyan YA, Yakunin AN, Meerovich IG, Fixler D, Savitsky AP, Tuchin VV(2021) Interaction of laser radiation and complexes of gold nanoparticles linked with proteins.Quantumelectron51: 52–63. https://doi.org/10.1070/QEL17492
  11. Рожков СП, Горюнов АС(2017) Структурно-динамические эффекты взаимодействия белка и других биологически значимых молекул с шунгитовым наноуглеродом. Труды Карельского научного центра РАН, серия Экспериментальная биология 5: 33–44. [RozhkovSP,GoryunovAS(2017)Structuraldynamiceffectsofproteinandotherbiologicallysignificantmolecules’interactionwithshungitenanocarbon.Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, series Experimental Biology 5: 33–44.(InRuss)]. https://doi.org/10.17076/eb450
  12. Федотов ПС, Ермолин МС, Иванеев АИ(2022) Изучение наночастиц городской пыли: новые методы и подходы. Тез.докл. IVсъездааналитиковРоссии,М.С. 42. [Fedotov PS, Ermolin MS, Ivaneev AI(2022) Thestudyofurbandustnanoparticles:newmethodsandapproaches.Thesisof theIVCongressofAnalystsofRussia,Moscowp.42.(InRuss)].
  13. Бржезинский АС, Ермолин МС, Иванеев АИ, Федюнина НН, Федотов ПС(2022) Оценка содержания тяжелых металлов в городской пыли города Москвы и их потенциальной опасности для городских экосистем. Тез.докл. IVсъездааналитиковРоссии,М.С. 49 [Brzhezinskiy AS, Ermolin MS, Ivaneev AI, Fedyunina NN, Fedotov PS(2022)Assessmentof thecontentofheavymetalsintheurbandustofMoscowandtheirpotentialdangertourbanecosystems. Thesisof theIVCongressofAnalystsofRussia,Moscow,p.49.(InRuss)].
  14. Ермолин МС, Иванеев АИ, Федюнина НН, Бржезинский АС, Федотов ПС(2022) Распределение платины и палладия между различными фракциями дорожной пыли. Тез. докл.IVсъезда аналитиков России, М. С. 252. [ErmolinMS,IvaneevAI,FedyuninaNN,BrzhezinskiyAS,FedotovPS(2022)Distributionofplatinumandpalladiumbetweendifferentfractionsofroaddust.Thesisof theIVCongressofAnalystsofRussia,Moscow,p.252.(InRuss)].
  15. Коростелев ПП(1962) Приготовление растворов для химико-аналитических работ. М.:АНСССР. [Korostelev PP(1962) Preparation of solutions for chemical and analytical work. Moscow: Academy of Sciences of the USSR (In Russ)].
  16. Inge A(1978) Characterization of proteins and other macromolecules by agarose gel chromatography. J Chromatogr A 152: 21–32. https://doi.org/10.1016/S0021-9673(00)85330-3
  17. Vlasova IM, Kuleshova AA, Vlasov AA, Saletsky AM(2013) Molecular association processes and fluorescent characteristics of nanomarkers of the fluorescein family in solutions of bovine serum albumin. Moscow university physics bulletin. 68: 304–310. https://doi.org/10.3103/S0027134913040097
  18. Zhil'nikova MI, Shafeev GA, Barmina EV, Kalachev YuL, Uvarov OV(2020) Spectral features of colloidal solutions of elongated gold nanoparticles produced by laser ablation in aqueous solutions.Quantum electron 50: 608612. https://doi.org/10.1070/QEL17218
  19. Apyari VV, Dmitrienko SG, Gorbunova MV,Furletov AA, Zolotov YuA(2019) Gold and silver nanoparticles in optical molecular absorption spectroscopy. J Anal Chem 74: 21–32. https://doi.org/10.1134/S1061934819010052
  20. ФуксНА(1955)МеханикааэрозолейМ.:ИздательствоАНСССР[Fuks NA (1955) Mechanics of aerosols. Moscow: Publishing House of the USSR Academy of Sciences (In Russ)].
  21. Gyrylov EI, Nomoev AV(2018) A facility for the production nanoparticles by laser ablation in liquid. ZavodLabDiagnMater84: 41–45. https://doi.org/10.26896/1028-6861-2018-84-9-41-45
  22. Ершов БГ(2001)Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства. Российскийхимическийжурнал45: 20–30. [Ershov BG(2001)Metal nanoparticles in aqueous solutions: electronic, optical and catalytic properties. Rossiiskii khimicheskii zhurnal 45: 20–30. (In Russ)].
  23. Zabotnov SV, Kurakina DA, Kashaev FV, Skobelkina AV, Kolchin AV, Kaminskaya TP, Khilov AV, Agrba PD, Sergeeva EA, Kashkarov PK(2020)Structural and optical properties of nanoparticles formed by laser ablation of porous silicon in liquids: perspectives in biophotonics. Quantum electron. 50: 69–75. https://doi.org/10.1070/QEL17208
  24. Smirnova TD, Danilina TG, Rusanova TY, Simbireva NA(2021) Effect of silver nanoparticles on the fluorescence properties of levofloxacin in the presence of yttrium (III) ions in aqueous and micellar surfactant media. J Anal Chem 76:89–94. https://doi.org/10.1134/S1061934821010147
  25. Dzherayan TG, Ermolin MS, Vanifatova NG(2020) Effectiveness of the simultaneous application of capillary zone electrophoresis and static light scattering in the study of volcanic ash nano- and submicroparticles. J Anal Chem 75: 67–72. https://doi.org/10.1134/S1061934820010050
  26. Ivaneev AI, Ermolin MS, Fedotov PS(2021) Separation, characterization, and analysis of environmental nano- and microparticles: state-of-the-art methods and approaches. J Anal Chem 76: 413–429. https://doi.org/10.1134/S1061934821040055

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025