Optimization of the composition of Nd-containing scintillator to increase its light output and stability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on Nd(III) 3,5,5-trimethylhexanoate and an additional solvent TBP, the composition of a liquid organic scintillator for the determination of double neutrinoless β-decay was developed in LAB. IR spectroscopy has shown that TBP forms additional coordination bonds with neodymium carboxylate and thereby prevents its hydrolysis and polymerization. It has been shown that the optimal method for studying the purity and stability of a scintillator is UV spectrophotometry. The light yield of the scintillator composition [LAB + BPO (3 g/l) + TBP (6.3%) + Nd (5.9 ± 0.2 g/l)] is 78% relative to the scintillator [LAB + BPO (3 g/l)].

Full Text

Restricted Access

About the authors

A. V. Veresnikova

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University named after H. M. Berbekov

Email: g-novikova@mail.ru
Russian Federation, Moscow; Nalchik

Z. Y. Isupova

Kabardino-Balkarian State University named after H. M. Berbekov

Email: g-novikova@mail.ru
Russian Federation, Nalchik

B. V. Lokshin

A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: g-novikova@mail.ru
Russian Federation, Moscow

V. P. Morgalyuk

A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: g-novikova@mail.ru
Russian Federation, Moscow

A. M. Nemeryuk

NRC “Kurchatov Institute”– IREA

Email: g-novikova@mail.ru
Russian Federation, Moscow

G. Y. Novikova

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University named after H. M. Berbekov

Author for correspondence.
Email: g-novikova@mail.ru
Russian Federation, Moscow; Nalchik

S. A. Elcheparova

Kabardino-Balkarian State University named after H. M. Berbekov

Email: g-novikova@mail.ru
Russian Federation, Nalchik

E. A. Yanovich

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University named after H. M. Berbekov

Email: g-novikova@mail.ru
Russian Federation, Moscow; Nalchik

References

  1. А. С. Барабаш, УФН 184, 524 (2014) [Phys. Usp. 57, 482 (2014)].
  2. C. L. Cowan, F. B. Harrison, L. M. Langer, and F. Reines, Nuovo Cimento 3, 649 (1956); https://doi.org/10.1007/BF02744440
  3. M. C. Chen for the SNO+ Collab., in Proceedings of the 34th International Conference on High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania 30 Jul.–5 Aug. 2008; arXiv: 0810.3694 [hep-ex].
  4. Kai Zuber for the SNO+ Collab., AIP Conf. Proc. 942, 101 (2007); https://doi.org/10.1063/1.2805112
  5. C. Kraus for the SNO+ Collab., Prog. Part. Nucl. Phys. 57, 150 (2006); http://doi: 10.1016/j.ppnp.2005.12.001
  6. J. Argyriades et al. (NEMO Collab.), Phys. Rev. C 80, 032501(R) (2009); https://doi.org/10.1103/PhysRevC.80.032501
  7. A. R. Amiraslanova, Z. A. Akhmatov, I. R. Barabanov, A. V. Veresnikova, V. I. Gurentsov, A. M. Gangapshev, D. M. Kabardova, V. V. Kazalov, Z. Kh. Kalazhokov, A. A. Kanshaov, G. Ya. Novikova, D. A. Tekueva, M. Sh. Tkhazaplizhev, and E. A. Yanovich, Phys. At. Nucl. 87, 784 (2024); http://doi: 10.1134/S106377882470073X
  8. I. Barabanov, L. Bezrukov, C. Cattadori, N. Danilov, A. Di Vacri, A. Ianni, S. Nisi, F. Ortica, A. Romani, C. Salvo, O. Smirnov, and E. Yanovich, arXiv: 0909.2152v1 [physics.ins-det].
  9. И. Р. Барабанов, А. В. Вересникова, З. Ю. Исупова, Б. В. Локшин, В. П. Моргалюк, А. М. Немерюк, Г. Я. Новикова, С. А. Эльчепарова, Е. А. Янович, ЯФ 86, 742 (2023) [Phys. At. Nucl. 86,1286 (2024)]; https://doi.org/10.31857/S0044002723060132
  10. G. Ya. Novikova, V. P. Morgalyuk, and E. A. Yanovich, Russ. J. Inorg. Chem. 66, 1161 (2021); https://doi.org/10.1134/S0036023621080180
  11. I. R. Barabanov, L. B. Bezrukov, A. V. Veresnikova, Yu. M. Gavriluk, V. I. Gurentsov, V. V. Kazalov, V. V. Kuzminov, G. Ya. Novikova, S. V. Semenov, V. V. Sinev, G. O. Tsvetkov, and E. A. Yanovich, Phys. At. Nucl. 82, 89 (2019); https://doi.org/10.1134/S1063778819020029
  12. L. B. Bezrukov, G. Ya. Novikova, E. A. Yanovich, A. I. Kostylev, N. A. Korsakova, E. K. Legin, A. E. Miroslavov, M. D. Karavan, B. V. Lokshin, and V. P. Morgalyuk, Russ. J. Inorg. Chem. 63, 1564 (2018); https://doi.org/10.1134/S0036023618120045
  13. I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, and E. A. Yanovich, Phys. Part. Nucl. Lett. 15, 630 (2018).
  14. I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, and E. A. Yanovich, Instrum. Exp. Tech. 60, 533 (2017); https://doi.org/10.1134/S0020441217030162
  15. И. Р. Барабанов, Г. Я. Новикова, Е. А. Янович, Препринт ИЯИ РАН 1427/2016.
  16. I. R. Barabanov, L. B. Bezrukov, C. Cattadori, N. A. Danilov, A. Di Vacri, A. Ianni, S. Nisi, G. Ya. Novikova, F. Ortica, A. Romani, C. Salvo, O. Yu. Smirnov, and E. A. Yanovich, Instrum. Exp. Tech. 55, 545 (2012).
  17. I. B. Nemchenok, V. B. Brudanin, O. I. Kochetova, V. V. Timkin, and A. A. Shurenkova, Bull. Russ. Acad. Sci.: Phys. 75, 1007 (2011); https://doi.org/10.3103/S1062873811070288
  18. J. Hartnell for the SNO+ Collab., arXiv: 1201.6169v1 [physics.ins-det].
  19. G. Ya. Novikova, A. M. Nemeryuk, V. P. Morgalyuk, A. A. Moiseeva, V. B. Lokshin, and E. A. Yanovich, Russ. J. Inorg. Chem. 69, 1693 (2024).
  20. The JUNO Collab., arXiv: 2103.16900v1 [physics.ins-det].
  21. Л. Б. Безруков, Н. И. Бакулина, Н. С. Иконников, В. П. Моргалюк, Г. Я. Новикова, А. С. Чепурнов, Препринт ИЯИ РАН 1382/2014.
  22. Н. И. Бакулина, Г. Я. Новикова, А. С. Редчин, Т. В. Бухаркина, С. В. Вержичинская, М. Г. Макаров, В. В. Зинченко, И. Ю. Кузнецов, Химическая промышленность сегодня, № 3, 38 (2018).
  23. E. P. Veretenkin, V. N. Gavrin, B. A. Komarov, Yu. P. Kozlova, A. D. Lukanov, V. P. Morgalyuk, A. M. Nemeryuk, and G. Ya. Novikova, Phys. At. Nucl. 85, 588 (2022).
  24. G. Ya. Novikova, M. V. Solovyova, and E. A. Yanovich, ЯФ 83, 76 (2020); http://doi: 10.31857/S0044002720010109
  25. RENO Collab., arXiv: 1003.1391 [hep-ex].
  26. W. Beriguete, J. Cao, Y. Ding, S. Hans, K. M. Heeger, L. Hu, A. Huang, K.-B. Lu, I. Nemchenok, M. Qi, R. Rosero, H. Sun, R. Wang, Yifand Wang, L. Wen, Yi Yang, et al., Nucl. Instrum. Methods A 763, 82 (2014); http://doi: 10.1016/j.nima.2014.05.119
  27. NEOS Collab. (Y. J. Ko, B. R. Kim, J. Y. Kim, B. Y. Han, C. H. Jang, E. J. Jeon, K. K. Joo, H. J. Kim, H. S. Kim, Y. D. Kim, J. Lee, J. Y. Lee, M. H. Lee, Y. M. Oh, H. K. Park, H. S. Park, et al.), Phys. Rev. Lett. 118, 121802 (2017).
  28. A. Abramov, A. Chepurnov, A. Etenko, M. Gromov, A. Konstantinov, D. Kuznetsov, E. Litvinovich, G. Lukyanchenko, I. Machulin, A. Murchenko, A. Nemeryuk, R. Nugmanov, B. Obinyakov, A. Oralbaev, A. Rastimeshin, M. Skorokhvatov, and S. Sukhotin, arXiv: 2112.09372 [physics.ins-det]; https://doi.org/10.48550/arXiv.2112.09372
  29. H. Almaz ´an et al. (STEREO Collab.), Phys. Rev. D 102, 052002 (2020); https://doi.org/10.1103/PhysRevD.102.052002
  30. А. П. Серебров, В. Г. Ивочкин, Р. М. Самойлов, А. К. Фомин, В. Г. Зиновьев, С. С. Волков, В. Л. Головцов, Н. В. Грузинский, П. В. Неустроев, В. В. Федоров, И. В. Паршин, А. А. Герасимов, М. Е. Зайцев, М. Е. Чайковский, А. М. Гагарский, А. Л. Петелин и др., ЖТФ 93, 175 (2023); http://doi: 10.21883/JTF.2023.01.54079.241-22
  31. P. K. Lightfoot, V. F. Kudryavtsev, N. J. C. Spooner, I. Liubarsky, R. Luscher, and N. J. T Smith, Nucl. Instrum. Methods A 522, 439 (2004).
  32. А. В. Карякин, Г. А. Кривенцова, Состояние воды в органических и неорганических соединениях (по их ИК-спектрам поглощения) (Наука, Москва, 1973).
  33. C. Buck, F. X. Hartmann, D. Motta, and S. Schoenert, Chem. Phys. Lett. 435, 252 (2007); 10.1016/j.cplett.2006.12.087' target='_blank'>http://doi: 10.1016/j.cplett.2006.12.087
  34. C. Buck, F. X. Hartmann, T. Lasserre, D. Motta, S. Schonert, and U. Schwan, J. Lumin. 106, 57 (2004); https://doi.org/10.1016/S0022-2313(03)00134-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. UV spectra of LAB: 1 – LAB purified on Al2O3 (Fluka), 2 – original LAB.

Download (136KB)
3. Fig. 2. UV absorption spectra of TBP: 1 — TBP (99%, Merck), 2 — TBP (99%, Chemical Line).

Download (131KB)
4. Fig. 3. IR spectrum of TBP (Merck).

Download (140KB)
5. Fig. 4. IR spectrum of 0.5M solution of Nd(TMHA)3 in TBP (Merck).

Download (146KB)
6. Fig. 5. IR spectrum of dry salt Nd(TMHA)3.

Download (125KB)
7. Fig. 6. UV spectra: 1 — LAB, 2 — LAB + BPO, 3 — LAB + PPO (Aldrich), 4 — LAB + PPO (Reakhim 1992, batch 8). Concentrations of all additives are 3 g/l.

Download (148KB)
8. Fig. 7. Amplitude spectra of 137Cs (662 keV) in LAB-based scintillators: 1 — LAB + VRO (3 g/l), 2 — Nd-LS (stored under argon for 48 days + under air for 24 days), 3 — Nd-LS (stored under air for 72 days).

Download (144KB)
9. Fig. 8. UV spectra of Nd-LS: 1 - sample stored under argon for 48 days, 2 - sample stored under air for more than two months.

Download (116KB)
10. Fig. 9. UV spectra of LAB: 1 – LAB purified on Al2O3 (Fluka), 2 – LAB after storage in air for two months.

Download (77KB)

Copyright (c) 2025 Russian Academy of Sciences