Comparison of annealing schemes of Yb: YAG and Yb: LuAG ceramics after hot isostatic pressing

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The Yb: YAG and Yb: LuAG ceramic samples with the SiO2+B2O3 sintering additives, as well as the Yb: YAG ceramic samples with the CaO+MgO sintering additives, were obtained by reactive vacuum presintering at different temperatures followed by hot isostatic pressing (HIP) with different annealing schemes used after HIP. The optimal presintering conditions were determined, the effect of the sintering additives on the structural and optical properties of the samples was studied. The optical transmission of the samples was investigated, and the average grain size was measured. It was found that the optimal presintering temperature for Yb: YAG samples with the SiO2+B2O3 sintering additives is below 1500 °C, with CaO+MgO – in the range of 1700–1750 °C, and for Yb: LuAG samples with the SiO2+B2O3 sintering additives – in the range of 1500–1600 °C. To achieve the best optical characteristics, samples with SiO2+B2O3 sintering additives must be annealed first in vacuum and then in air after HIP. In the case of composition with CaO+MgO sintering additives, additional annealing after HIP leads to a loss of transparency by the samples.

作者简介

K. Lopukhin

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

V. Balashov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

A. Efimov

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

S. Kozlova

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS

Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation

M. Gerke

Vladimir State University named after Alexander and Nikolay Stoletovs

Email: kvl215@fireras.su
Gorky Str., 87, Vladimir, 600000 Russian Federation

D. Kochuev

Vladimir State University named after Alexander and Nikolay Stoletovs

编辑信件的主要联系方式.
Email: kvl215@fireras.su
Gorky Str., 87, Vladimir, 600000 Russian Federation

参考

  1. Ikesue A., Kinoshita T., Kamata K. et al. // J. Amer. Ceram. Soc. 1995. V. 78. № 4. P. 1033.
  2. doi.org/10.1111/j.1151-2916.1995.tb08433.x
  3. Ikesue A., Aung Y.L. // Nature Photonics. 2008. V. 2. № 12. P. 721.
  4. doi.org/10.1038/nphoton.2008.243
  5. Lu J., Ueda K., Yagi H. et al. // J. Alloys Compd. 2002. V. 341. № 1–2. P. 220.
  6. doi.org/10.1016/S0925-8388(02)00083-X
  7. Ikesue A., Aung Y.L., Taira T. et al. // Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
  8. doi.org/10.1146/annurev.matsci.36.011205.152926
  9. Brenier A., Boulon G. // J. Alloys Compd. 2001. V. 323–324. P. 210.
  10. doi.org/10.1016/S0925-8388(01)01112-4
  11. Dong J., Ueda K., Yagi H. et al. // Laser Phys. Let. 2009. V. 6. № 4. P. 282.
  12. doi.org/10.1002/lapl.200810136
  13. Luo D., Zhang J., Xu C. et al. // Opt. Mater. 2012. V. 34. № 6. P. 936.
  14. doi.org/10.1016/j.optmat.2011.04.017
  15. Tang F., Cao Y., Guo W. et al. // Opt. Mater. 2011. V. 33. № 8. P. 1278.
  16. doi.org/10.1016/j.optmat.2011.02.049
  17. Wu Y., Li J., Pan Y. et al. // J. Amer. Ceram. Soc. 2007. V. 90. № 10. P. 3334.
  18. doi.org/10.1111/j.1551-2916.2007.01885.x
  19. Luo D., Zhang J., Xu C. et al. // Opt. Mater. Express. 2012. V. 2. № 10. P. 1425.
  20. doi.org/10.1364/OME.2.001425
  21. Ikesue A., Furusato I., Kamata K. // J. Amer. Ceram. Soc. 1995. V. 78. № 1. P. 225.
  22. doi.org/10.1111/j.1151-2916.1995.tb08389.x
  23. Awaad M. // J. Ceram. Sci. Technol. 2012. V. 3. № 1. P. 35.
  24. doi.org/10.4416/JCST2012-00043
  25. Frage N., Kalabukhov S., Sverdlov N. et al. // Ceram. Int. 2012. V. 38. № 7. P. 5513.
  26. doi.org/10.1016/j.ceramint.2012.03.066
  27. Frage N., Kalabukhov S., Sverdlov N. et al. // J. Europ. Ceram. Soc. 2010. V. 30. № 16. P. 3331.
  28. doi.org/10.1016/j.jeurceramsoc.2010.08.006
  29. Sokol M., Kalabukov S., Kasiyan V. et al. // J. Amer. Ceram. Soc. 2016. V. 99. № 3. P. 802.
  30. doi.org/10.1111/jace.14051
  31. Lagny M., Böhmler J., Lemonnier S. et al. // Open Ceram. 2024. V. 18. P. 100570.
  32. doi.org/10.1016/j.oceram.2024.100570
  33. Bigotta S., Galecki L., Katz A. et al. // Opt. Express. 2018. V. 26. № 3. P. 3435.
  34. doi.org/10.1364/OE.26.003435
  35. Ikesue A., Aung Y.L. // J. Amer. Ceram. Soc. 2017. V. 100. № 1. P. 26.
  36. doi.org/10.1111/jace.14588
  37. Zhang P., Jiang B., Fan J. et al. // Opt. Mater. Express. 2015. V. 5. № 10. P. 2209.
  38. doi.org/10.1364/OME.5.002209
  39. Jiang B., Lu X., Zeng Y. et al. // Phys. Stat. Sol. C. 2013. V. 10. № 6. P. 958.
  40. doi.org/10.1002/pssc.201300016
  41. Kravtsov A.A., Chapura O.M., Tarala V.A. et al. // J. Europ. Ceram. Soc. 2025. V. 45. № 3. P. 117033.
  42. doi.org/10.1016/j.jeurceramsoc.2024.117033
  43. Lee S., Kupp E.R., Stevenson A.J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 7. P. 1456.
  44. doi.org/10.1111/j.1551-2916.2009.03029.x
  45. Tian F., Chen C., Liu Y. et al. // Opt. Mater. 2020. V. 101. P. 109728.
  46. doi.org/10.1016/j.optmat.2020.109728
  47. Nie Y., Liu Y., Zhao Y., Zhang M. // Opt. Mater. 2015. V. 46. P. 203.
  48. doi.org/10.1016/j.optmat.2015.04.019
  49. Xu X., Zhao Z., Zhao G. et al. // J. Crystal Growth. 2003. V. 257. № 3–4. P. 297.
  50. doi.org/0.1016/S0022-0248(03)01455-6
  51. Wang X., Liu Y., Zhao P. et al. // J. Appl. Phys. 2015. V. 117. № 15. P. 153104.
  52. doi.org/10.1063/1.4918550
  53. Tang F., Huang J., Guo W. et al. // Opt. Mater. 2012. V. 34. № 5. P. 757.
  54. doi.org/10.1016/j.optmat.2011.10.015
  55. Jiang N., Ouynag C., Liu Y. et al. // Opt. Mater. 2019. V. 95. P. 109203.
  56. doi.org/10.1016/j.optmat.2019.109203
  57. Zhang Y., Cai M., Jiang B. et al. // Opt. Mater. Express. 2014. V. 4. № 10. P. 2182.
  58. doi.org/10.1364/OME.4.002182
  59. Lu Z., Lu T., Wei N. et al. // Opt. Mater. 2015. V. 47. P. 292.
  60. doi.org/10.1016/j.optmat.2015.05.043
  61. Lapin V.A., Kravtsov A.A., Suprunchuk V. et al. // Opt. Mater. 2024. V. 157. P. 116353.
  62. doi.org/10.1016/j.optmat.2024.116353
  63. Helle A.S., Easterling K.E., Ashby M.F. // Acta Metall. 1985. V. 33. № 12. P. 2163.
  64. doi.org/10.1016/0001-6160(85)90177-4
  65. Kwon O.-H., Messing G.L. // Acta Metall. Mater. 1991. V. 39. № 9. P. 2059.
  66. doi.org/10.1016/0956-7151(91)90176-2

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025