Investigations of internal gravity waves by using radio occultation temperature data in the Venus's atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Based on the previously developed method for identifying narrow-spectrum wave events, a threshold discrimination criterion for internal gravity waves (IGWs) has been established and substantiated upon fulfillment of which the analyzed fluctuations can be considered as wave manifestations. This method is universal in the sense that it can be used to analyze specified vertical profiles obtained by any methods both in the Earth’s atmosphere and in the atmosphere of other planets. Application of the developed method to temperature profiles reconstructed from radio occultation measurements of the Magellan satellite gave us the opportunity to identify narrow-spectrum wave events in the Venus’s atmosphere and to determine key IGW characteristics, such as: intrinsic frequency, amplitudes of vertical and horizontal disturbances of wind speed, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase velocities, and others.

About the authors

V. N. Gubenko

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: gubenko@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

I. A. Kirillovich

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

V. E. Andreev

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

References

  1. Gubenko V.N., Pavelyev A.G., Andreev V.E. // J. Geophys. Res. 2008. V. 113. № D8. Article No. D08109.
  2. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. // Atmos. Meas. Tech. 2011. V. 4. № 10. P. 2153.
  3. Губенко В.Н., Павельев А.Г., Салимзянов Р.Р., Андреев В.Е. // Космич. исслед. 2012. Т. 50. № 1. С. 23.
  4. Губенко В.Н., Кириллович И.А., Павельев А.Г. // Космич. исслед. 2015. Т. 53. № 2. C. 141.
  5. Gubenko V.N., Andreev V.E., Pavelyev A.G. // J. Geophys. Res. 2008. V. 113. № E3. Article No. E03001.
  6. Fritts D.C., Wang L., Tolson R.H. // J. Geophys. Res. 2006. V. 111. № A12. Article No. A12304.
  7. Rossow W.B., Del Genio A.D., Limaye S.S. et al. // J. Geophys. Res. 1980. V. 85. № А13. P. 8107.
  8. Seiff A., Kirk D.B., Young R.E. et al. // J. Geophys. Res. 1980. V. 85. № А13. P. 7903.
  9. Counselman C.C. III, Gourevitch S.A., King R.W. et.al // J. Geophys. Res. 1980. V. 85. № А13. P. 8026.
  10. Hinson D.P., Jenkins J.M. // Icarus. 1995. V. 114. № 2. P. 310.
  11. Yakovlev O.I., Matyugov S.S., Gubenko V.N. // Icarus. 1991. V. 94. № 2. P. 493.
  12. Tellmann S., Hausler B., Hinson D.P. et al. // Icarus. 2012. V. 221. № 2. P. 471.
  13. Kliore A.J., Patel I.R. // J. Geophys. Res. 1980. V. 85. № А13. P. 7957.
  14. Губенко В.Н., Кириллович И.А., Губенко Д.В. и др. // Астрономический вестн. 2021. Т. 55. № 1. С. 3.
  15. Gubenko V.N., Pavelyev A.G., Kirillovich I.A., Liou Y.-A. // Adv. Space Res. 2018. V. 61. № 7. P. 1702.
  16. Губенко В.Н., Кириллович И.А. // Солнечно-земная физика. 2018. Т. 4. № 2. C. 76.
  17. Rechou A., Kirkwood S., Arnault J., Dalin P. // Atmos. Chem. Phys. 2014. V. 14. № 13. P. 6785.
  18. Fritts D.C. // Pure Appl. Geophys. 1989. V. 130. № 2–3. P. 343.
  19. Fritts D.C., Rastogi P.K. // Radio Sci. 1985. V. 20. № 6. P. 1247.
  20. Dunkerton T.J. // J. Atmos. Sci. 1984. V. 41. № 23. P. 3396.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences