Investigations of internal gravity waves by using radio occultation temperature data in the Venus's atmosphere
- Authors: Gubenko V.N.1, Kirillovich I.A.1, Andreev V.E.1
-
Affiliations:
- Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS
- Issue: Vol 70, No 9 (2025)
- Pages: 791-797
- Section: ON THE 90th ANNIVERSARY OF Yu.V. GULYAEV
- URL: https://stomuniver.ru/0033-8494/article/view/696914
- DOI: https://doi.org/10.7868/S3034590125090011
- ID: 696914
Cite item
Abstract
Based on the previously developed method for identifying narrow-spectrum wave events, a threshold discrimination criterion for internal gravity waves (IGWs) has been established and substantiated upon fulfillment of which the analyzed fluctuations can be considered as wave manifestations. This method is universal in the sense that it can be used to analyze specified vertical profiles obtained by any methods both in the Earth’s atmosphere and in the atmosphere of other planets. Application of the developed method to temperature profiles reconstructed from radio occultation measurements of the Magellan satellite gave us the opportunity to identify narrow-spectrum wave events in the Venus’s atmosphere and to determine key IGW characteristics, such as: intrinsic frequency, amplitudes of vertical and horizontal disturbances of wind speed, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase velocities, and others.
About the authors
V. N. Gubenko
Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS
Email: gubenko@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation
I. A. Kirillovich
Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RASVvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation
V. E. Andreev
Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RASVvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation
References
- Gubenko V.N., Pavelyev A.G., Andreev V.E. // J. Geophys. Res. 2008. V. 113. № D8. Article No. D08109.
- Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. // Atmos. Meas. Tech. 2011. V. 4. № 10. P. 2153.
- Губенко В.Н., Павельев А.Г., Салимзянов Р.Р., Андреев В.Е. // Космич. исслед. 2012. Т. 50. № 1. С. 23.
- Губенко В.Н., Кириллович И.А., Павельев А.Г. // Космич. исслед. 2015. Т. 53. № 2. C. 141.
- Gubenko V.N., Andreev V.E., Pavelyev A.G. // J. Geophys. Res. 2008. V. 113. № E3. Article No. E03001.
- Fritts D.C., Wang L., Tolson R.H. // J. Geophys. Res. 2006. V. 111. № A12. Article No. A12304.
- Rossow W.B., Del Genio A.D., Limaye S.S. et al. // J. Geophys. Res. 1980. V. 85. № А13. P. 8107.
- Seiff A., Kirk D.B., Young R.E. et al. // J. Geophys. Res. 1980. V. 85. № А13. P. 7903.
- Counselman C.C. III, Gourevitch S.A., King R.W. et.al // J. Geophys. Res. 1980. V. 85. № А13. P. 8026.
- Hinson D.P., Jenkins J.M. // Icarus. 1995. V. 114. № 2. P. 310.
- Yakovlev O.I., Matyugov S.S., Gubenko V.N. // Icarus. 1991. V. 94. № 2. P. 493.
- Tellmann S., Hausler B., Hinson D.P. et al. // Icarus. 2012. V. 221. № 2. P. 471.
- Kliore A.J., Patel I.R. // J. Geophys. Res. 1980. V. 85. № А13. P. 7957.
- Губенко В.Н., Кириллович И.А., Губенко Д.В. и др. // Астрономический вестн. 2021. Т. 55. № 1. С. 3.
- Gubenko V.N., Pavelyev A.G., Kirillovich I.A., Liou Y.-A. // Adv. Space Res. 2018. V. 61. № 7. P. 1702.
- Губенко В.Н., Кириллович И.А. // Солнечно-земная физика. 2018. Т. 4. № 2. C. 76.
- Rechou A., Kirkwood S., Arnault J., Dalin P. // Atmos. Chem. Phys. 2014. V. 14. № 13. P. 6785.
- Fritts D.C. // Pure Appl. Geophys. 1989. V. 130. № 2–3. P. 343.
- Fritts D.C., Rastogi P.K. // Radio Sci. 1985. V. 20. № 6. P. 1247.
- Dunkerton T.J. // J. Atmos. Sci. 1984. V. 41. № 23. P. 3396.
Supplementary files


