Стимул-чувствительные системы для доставки лекарств на основе бислойных липидных везикул: новые тенденции
- Авторы: Ефимова А.А.1, Сыбачин А.В.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова, химический факультет
- Выпуск: Том 85, № 5 (2023)
- Страницы: 566-582
- Раздел: Статьи
- Статья получена: 27.02.2025
- Статья опубликована: 01.09.2023
- URL: https://stomuniver.ru/0023-2912/article/view/671240
- DOI: https://doi.org/10.31857/S0023291223600608
- EDN: https://elibrary.ru/ZAJLIH
- ID: 671240
Цитировать
Аннотация
Разработка новых эффективных способов борьбы с тяжелыми заболеваниями, среди которых особое место занимают онкологические и инфекционные, остается актуальной задачей биомедицины и биотехнологии. В настоящее время усилия ученых сосредоточены на поисках лекарственных систем, обеспечивающих высокую эффективность лечения при минимальном воздействии на организм. Развитие этого направления привело к созданию стимул-чувствительных липосом, которые могут высвобождать инкапсулированное лекарство в ответ на определенный стимул: температуру, pH, электромагнитное поле, свет и др. Под воздействием стимула липидные бислойные везикулы изменяют структуру, размер, поверхностный заряд или фазовое состояние, что приводит к контролируемому высвобождению лекарственного препарата в определенном месте в организме, что позволяет добиться более точной и эффективной доставки. В данном обзоре обсуждаются современные тенденции в разработке стимул-чувствительных систем на основе липосом для контролируемой доставки биологически активных веществ.
Ключевые слова
Об авторах
А. А. Ефимова
Московский государственный университет имени М.В. Ломоносова,химический факультет
Email: ephimova@genebee.msu.su
Россия, 119991, Москва, Ленинские горы, 1, стр. 3
А. В. Сыбачин
Московский государственный университет имени М.В. Ломоносова,химический факультет
Автор, ответственный за переписку.
Email: ephimova@genebee.msu.su
Россия, 119991, Москва, Ленинские горы, 1, стр. 3
Список литературы
- Li Y.-J., Lei Y.-H., Yao N. et al. Autophagy and multidrug resistance in cancer // Chinese Journal of Cancer. 2017. V. 36. P. 1. https://doi.org/10.1186/s40880-017-0219-2
- Migliore R., D’Antona N., Sgarlata C. et al. Co-loading of temozolomide and curcumin into a calix [4] arene-based nanocontainer for potential combined chemotherapy: Binding features, enhanced drug solubility and stability in aqueous medium // Nanomaterials. 2021. V. 11. № 11. P. 2930. https://doi.org/10.3390/nano11112930
- Petrov R.A., Mefedova S.R., Yamansarov E.Y. et al. New small-molecule glycoconjugates of docetaxel and GalNAc for targeted delivery to hepatocellular carcinoma // Molecular Pharmaceutics. 2020. V. 18. № 1. P. 461–468. https://doi.org/10.1021/acs.molpharmaceut.0c00980
- Vaneev A.N., Kost O.A., Eremeev N.L. et al. Superoxide dismutase 1 nanoparticles (nano-SOD1) as a potential drug for the treatment of inflammatory eye diseases // Biomedicines. 2021. V. 9. № 4. P. 396. https://doi.org/10.3390/biomedicines9040396
- Pottanam Chali S., Ravoo B. J. Polymer Nanocontainers for Intracellular Delivery. Angewandte Chemie (International ed. in English) // 2020. V. 9 № 8. P. 2962–2972. https://doi.org/10.1002/anie.201907484
- Zhang J., Lin Y., Lin Z. et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy // Advanced Science. 2022. V. 9. № 5. P. 2103444. https://doi.org/10.1002/advs.202103444
- Barba A.A., Bochicchio S., Dalmoro A. et al. Engineering approaches for drug delivery systems production and characterization // Pharmaceutics. 2019. V. 581. P. 119267. https://doi.org/10.1016/j.ijpharm.2020.119267
- Hou X., Zaks T., Langer R. et al. Lipid nanoparticles for mRNA delivery // Nat. Rev. Mater. 2021. V. 6. P. 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
- Wahlich J., Desai A., Greco F. et al. Nanomedicines for the delivery of biologics // Pharmaceutics. 2019. V. 11. № 5. P. 210. https://doi.org/10.3390/pharmaceutics11050210
- Karim M.E., Shetty J., Islam R.A. et al. Strontium sulfite: A new pH-responsive inorganic nanocarrier to deliver therapeutic siRNAs to cancer cells. Pharmaceutics // 2019. V. 11. № 2. P. 89. https://doi.org/10.3390/pharmaceutics11020089
- Cui Y., Yang Y., Ma M. et al. Reductive responsive micelle overcoming multidrug resistance of breast cancer by co-delivery of DOX and specific antibiotic // Journal of Materials Chemistry B. 2019. V. 7. № 40. P. 6075–6086. https://doi.org/10.1039/C9TB01093A
- Zhang L., Wu C., Mu S. et al. A chemotherapeutic self-sensibilized drug carrier delivering paclitaxel for the enhanced chemotherapy to human breast MDA-MB-231 cells // Colloids Surf. B: Biointerfaces. 2019. V. 181. P. 902–909. https://doi.org/10.1016/j.colsurfb.2019.06.052
- Madhumanchi S., Suedee R., Nakpheng T. et al. Binding interactions of bacterial lipopolysaccharides to polymyxin B in an amphiphilic carrier ‘sodium deoxycholate sulfate’ // Colloids Surf. B: Biointerfaces. 2019. V. 182. P. 110374. https://doi.org/10.1016/j.colsurfb.2019.110374
- Wells C.M., Harris M., Choi L. et al. Stimuli-responsive drug release from smart polymers // J. Funct. Biomater. 2019. V. 10. № 3. P. 34. https://doi.org/10.3390/jfb10030034
- Dhamecha D., Movsas R., Sano U. et al. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future // International Journal of Pharmaceutics. 2019. V. 569. P. 118627. https://doi.org/10.1016/j.ijpharm.2019.118627
- Efimova A.A., Sorokina S.A., Trosheva, K.S. et al. Complexes of cationic pyridylphenylene dendrimers with anionic liposomes: The role of dendrimer composition in membrane structural changes // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2225. https://doi.org/10.3390/ijms24032225
- Angelova A., Garamus V.M., Angelov B. et al. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and antitumor agents // Advances in Colloid and Interface Science. 2017. V. 249. P. 331–345. https://doi.org/10.1016/j.cis.2017.04.006
- Carmona-Ribeiro A.M., de Melo Carrasco L.D. Novel Formulations for antimicrobial peptides // International Journal of Molecular Sciences. 2014. V. 15. № 10. P. 18040–18083. https://doi.org/10.3390/ijms151018040
- Li M., Du C., Guo N. et al. Composition design and medical application of liposomes // European Journal of Medicinal Chemistry. 2019. V. 164. P. 640–653. https://doi.org/10.1016/j.ejmech.2019.01.007
- Tretiakova D., Le-Deigen I., Onishchenko N. Phosphatidylinositol stabilizes fluid-phase liposomes loaded with a melphalan lipophilic prodrug // Pharmaceutics. 2021. V. 13. № 4. P. 473. https://doi.org/10.3390/pharmaceutics13040473
- Sheoran R., Khokra S.L., Chawla V. et al. Recent patents, formulation techniques, classification and characterization of liposomes // Recent patents on nanotechnology. 2019. V. 13. № 1. P. 17–27. https://doi.org/10.2174/1872210513666181127110413
- Amarandi R.-M., Ibanescu A., Carasevici E. et al. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue // Pharmaceutics. 2022. V. 14. P. 308. https://doi.org/10.3390/pharmaceutics14020308
- Park H., Otte A., Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond // Journal of Controlled Release. 2022. V. 342. P. 53–65. https://doi.org/10.1016/j.jconrel.2021.12.030
- Barba A.A., Bochicchio S., Dalmoro A. et al. Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications // Pharmaceutics. 2019. V. 11. № 8. P. 360. https://doi.org/10.3390/pharmaceutics11080360
- Monteiro L.F., Malachias Â., Poundlana G. et al. Paclitaxel-loaded pH-sensitive liposome: New insights on structural and physicochemical characterization // Langmuir. 2018. V. 34. P. 5728–5737. https://doi.org/10.1021/acs.langmuir.8b00411
- Tokudome Y., Nakamura K., Itaya Y. et al. Enhancement of skin penetration of hydrophilic and lipophilic compounds by pH-sensitive liposomes // Journal of Pharmacy and Pharmaceutical Sciences. 2015. V. 18. P. 249–257. https://doi.org/10.18433/J3H89S
- Awad N.S., Paul V., AlSawaftah N.M. et al. Ultrasound-responsive nanocarriers in cancer treatment: A review // ACS Pharmacology & Translational Science. 2021. V. 4. № 2. P. 589–612. https://doi.org/10.1021/acsptsci.0c00212
- Yan W., Leung S.S., To K.K.W. Updates on the use of liposomes for active tumor targeting in cancer therapy // Nanomedicine. 2020. V. 15. P. 303–318. https://doi.org/10.2217/nnm-2019-0308
- Nikolova M.P., Kumar E.M., Chavali M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment // Pharmaceutics. 2020. V. 14. P. 2195. https://doi.org/10.3390/pharmaceutics14102195
- Yatvin M.B., Weinstein J.N., Dennis W.H. Design of liposomes for enhanced local release of drugs by hyperthermia // Science, New Series. 1978. V. 202. № 4374. P. 1290–1293. https://doi.org/10.1126/science.364652
- Kong G., Dewhirst M.W. Review hyperthermia and liposomes // International Journal of Hyperthermia. 1999. V. 15. № 5. P. 345–370. https://doi.org/10.1080/026567399285558
- Evans E., Needham D. Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions // J. Phys. Chem. 1987. V. 91. P. 4219–4228.
- Trosheva K.S., Sorokina S.A., Efimova A.A. et al. Interaction of multicomponent anionic liposomes with cationic pyridylphenylene dendrimer: Does the complex behavior depend on the liposome composition? // Biochimica et Biophysica Acta (BBA) – Biomembranes. 2021. V. 1863. № 12. P. 183761. https://doi.org/10.1016/j.bbamem.2021.183761
- Efimova A.A., Abramova T.A., Popov A.S., Grokhovskaya T.E. Interaction of chitosan with anionic liquid liposomes: Reversibility of structural rearrangements in lipid bilayer // Russian Journal of General Chemistry. 2022. V. 92. № 11. P. 2429–2435. https://doi.org/10.1134/S1070363222110275
- Антонов В.Ф. Эволюция липидных пор в бислое при фазовом переходе мембранных липидов // Регулярная и хаотическая динамика / Под ред. А.Б. Рубина. М., 2006.
- Dluhy R.A., Chowdhry B.Z., Cameron D.G. Infrared characterization of conformational differences in the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine // Biochimica et Biophysica Acta (BBA) – Biomembranes. 1985. V. 821. № 3. P. 437–444. https://doi.org/10.1016/0005-2736(85)90048-3
- Watts A., Spooner P.J.R. Phospholipid phase transitions as revealed by NMR // Chem. Phys. Lipids. 1991. V. 57. № 2–3. P. 195–211. https://doi.org/10.1016/0009-3084(91)90076-n
- Bozzuto G., Molinari A. Liposomes as nanomedical devices // International Journal of Nanomedicine. 2015. V. 10. P. 975–999. https://doi.org/10.2147/IJN.S68861
- Needham D., Anyarambhatla G., Kong G., Dewhirst M.W. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model // Cancer Res. 2000. V. 60. № 5. P. 1197–1201.
- Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery // Adv. Drug. Deliv. Rev. 2006. V. 58. № 15. P.1655–1670. https://doi.org/10.1016/j.addr.2006.09.020
- Chernikova E.V., Plutalova A.V., Mineeva K.O. et al. Ternary copolymers of acrylic acid, n-isopropylacrylamide, and butyl acrylate: Synthesis and aggregative behavior in dilute solutions // Polymer Science, Series B. 2016. V. 58. № 5. P. 564–573. https://doi.org/10.1134/S1560090416050031
- MacKinnon N., Guérin G., Liu B., Gradinaru C.C., Rubinstein L., Macdonald P.M. Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads // Langmuir. 2010. V. 26. № 2. P. 1081–1089. https://doi.org/10.1021/la902423v
- Yaroslavov A., Panova I., Sybachin A. et al. Payload release by liposome burst: Thermal collapse of microgels induces satellite destruction // Nanomedicine. 2017. V. 13. № 4. P. 1491–1494. https://doi.org/10.1016/j.nano.2017.02.001
- Alvarez-Lorenzo C., Bromberg L., Concheiro A. Light-sensitive intelligent drug delivery systems // Photochemistry and Photobiology. 2009. V. 85. № 4. P. 848–860. https://doi.org/10.1111/j.1751-1097.2008.00530.x
- Ericson M.B., Wennberg A.M., Larko O. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma // Ther. Clin. Risk Manag. 2008. V. 4. P. 1–9. https://doi.org/10.2147/TCRM.S1769
- Konan Y.N., Gurny R., Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy // J. Photochem. Photobiol. B. 2002. V. 66. P. 89–106. https://doi.org/10.1016/s1011-1344(01)00267-6
- Wang J.-Y., Wu Q.-F., Li J.-P. et al. Photo-sensitive liposomes: Chemistry and application in drug delivery // Mini-Reviews in Medicinal Chemistry. 2010. V. 10. № 2. P. 172–181. https://doi.org/10.2174/138955710791185091
- Pan P., Svirskis D., Rees S. W.P. et al. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications // Journal of Controlled Release. 2021. V. 338. P. 446–461. https://doi.org/10.1016/j.jconrel.2021.08.053
- Bisby R.H., Mead C., Morgan C.G. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology. 2000. V. 72. № 1. P. 57–61. https://doi.org/10.1562/0031-8655(2000)0720049mscpob2.0.co2
- Ghosh S., Carter K.A., Lovell J.F. Liposomal formulations of photosensitizers // Biomaterials. 2019. V. 218. P. 119341. https://doi.org/10.1016/j.biomaterials.2019.119341
- Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery // Nat. Rev. Drug Discov. 2014. V. 13. P. 813–827. https://doi.org/10.1038/nrd4333
- Liu M., Du H., Zhang W., Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications // Mater. Sci. Eng. C. 2017. V. 71. P. 1267–1280. https://doi.org/10.1016/j.msec.2016.11.030
- Noyhouzer T., L’Homme C., Beaulieu I. et al. Ferrocene-modified phospholipid: An innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells // Langmuir. 2016. V. 32. P. 4169–4178. https://doi.org/10.1021/acs.langmuir.6b00511
- Wang T., He W., Du Y., Wang J., Li X. Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release // Colloids Surf. B. Biointerfaces. 2021. V. 206. P. 111967. https://doi.org/10.1016/j.colsurfb.2021.111967
- Ong W., Yang Y., Cruciano A.C., McCarley R.L. Redox-triggered contents release from liposomes // J. Am. Chem. Soc. 2008. V. 130. P. 14739–14744. https://doi.org/10.1021/ja8050469
- Mirhadi E., Mashreghi M., Askarizadeh A. et al. Redox-sensitive doxorubicin liposome: A formulation approach for targeted tumor therapy // Sci. Rep. 2022. V. 12. P. 11310. https://doi.org/10.1038/s41598-022-15239-x
- Yin T., Liu Y., Yang M. et al. Novel chitosan derivatives with reversible cationization and hydrophobicization for tumor cytoplasm-specific burst co-delivery of siRNA and chemotherapeutics // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 14770–14783. https://doi.org/10.1021/acsami.9b19373
- Mahmoudzadeh M., Magarkar A., Koivuniemi A., Róg T., Bunker A. Mechanistic insight into how PEGylation reduces the efficacy of pH-sensitive liposomes from molecular dynamics simulations // Molecular pharmaceutics. 2021. V. 18. № 7. P. 2612–2621. https://doi.org/10.1021/acs.molpharmaceut.1c00122
- Lee E.S., Oh K.T., Kim D., Youn Y.S., Bae Y.H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine) // J. Control. Release 2007. V. 123. P. 19–26. https://doi.org/10.1016/j.jconrel.2007.08.006
- Efimova A.A., Sybachin A.V., Yaroslavov A.A. Effect of anionic-lipid-molecule geometry on the structure and properties of liposome-polycation complexes // Polymer Science Series C. 2011. V. 53. № 1. P. 18. https://doi.org/10.1134/S1811238211040011
- Ferreira D.S., Lopes S.C. de A., Franco M.S., Oliveira M.C. pH-sensitive liposomes for drug delivery in cancer treatment // Therapeutic Delivery. 2013. V. 4. № 9. P. 1099–1123. https://doi.org/10.4155/tde.13.80
- Li W., Nicol F., Szoka F.C. A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery // Adv. Drug Deliv. Rev. 2004. V. 56. № 7. P. 967–985. https://doi.org/10.1016/j.addr.2003.10.041
- Zhao Y., Ren W., Zhong T. et al., Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity // J. Control. Release. 2016. V. 222. P. 56. https://doi.org/10.1016/j.jconrel.2015.12.006
- Miyazaki M., Yuba E., Hayashi H. et al. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems // Bioconjug. Chem. 2018. V. 29. P. 44. https://doi.org/10.1021/acs.bioconjchem.7b00551
- Samoshina N.M., Liu X., Brazdova B. et al. Fliposomes: pH-sensitive liposomes containing a trans-2-morpholinocyclohexanol-based lipid that performs a conformational flip and triggers an instant cargo release in acidic medium // Pharmaceutics. 2011. V. 3. № 3. P. 379–405. https://doi.org/10.3390/pharmaceutics3030379
- Liu X., Zheng Y., Samoshina N.M. et al. Fliposomes: pH-triggered conformational flip of new trans-2-aminocyclohexanol-based amphiphiles causes instant cargo release in liposomes // J. Liposome Res. 2012. V. 22. № 4. P. 319–328. https://doi.org/10.3109/08982104.2012.698420
- Zheng Y., Liu X., Samoshina N.M. et al. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane – a structure-activity relationship study // Chem. Phys. Lipids. 2018. V. 210. P. 129–141. https://doi.org/10.1016/j.chemphyslip.2017.10.004
- Zaborova O.V., Timoshenko V.A., Nardin C. et al. New insights on the release and self-healing model of stimuli-sensitive liposomes // J. Colloid Interface Sci. 2023. V. 640. P. 558–567. https://doi.org/10.1016/j.jcis.2023.02.099
- Veremeeva P.N., Grishina I.V., Lapteva V.L. et al. pH-Sensitive liposomes with embedded 3,7-diazabicyclo[3.3.1]nonane derivative // Mendel. Commun. 2014. V. 3. № 24. P. 152–153. https://doi.org/10.1016/j.mencom.2014.04.008
- Veremeeva P.N., Lapteva V.L., Palyulin V.A. et al. Bispidinone-based molecular switches for construction of stimulus-sensitive liposomal containers // Tetrahedron. 2014. V. 70. № 7. P. 1408–1411. https://doi.org/10.1016/j.tet.2014.01.012
- Yaroslavov A., Efimova A., Smirnova N. et al. A novel approach to a controlled opening of liposomes // Colloids Surf. B: Biointerfaces. 2020. V. 190. P. 110906. https://doi.org/10.1016/j.colsurfb.2020.110906
- Efimova A.A., Popov A.S., Kazantsev A.V. et al pH-Sensitive liposomes with embedded 3-(isobutylamino)cholan-24-oic acid: What is the possible mechanism of fast cargo release? // Membranes. 2023. V. 13. № 4. P. 407. https://doi.org/10.3390/membranes13040407
- Popov A.S., Efimova A.A., Kazantsev A.V. et al. pH-Sensitive liposomes with embedded ampholytic derivatives of cholan-24-oic acid // Mendel. Commun. 2021. V. 31. № 6. P. 827–829. https://doi.org/10.1016/j.mencom.2021.11.019
- Yaroslavov A.A., Efimova A.A., Abramova T.A. et al. Multi-compartment containers from a mixture of natural and synthetic lipids // Mend. Commun. 2023. V. 33. № 2. P. 221–224. https://doi.org/10.1016/j.mencom.2023.02.023
- Grozdova I., Melik-Nubarov N., Efimova A. et al. Intracellular delivery of drugs by chitosan-based multi-liposomal complexes // Colloids Surf. B: Biointerfaces. 2020. V. 193. P. 11062. https://doi.org/10.1016/j.colsurfb.2020.111062
- Abri Aghdam M., Bagheri R., Mosafer J. et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release // J. Control Release. 2019. V. 315. P. 1–22. https://doi.org/10.1016/j.jconrel.2019.09.018
- Paliwal S.R., Paliwal R., Vyas S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery // Drug Deliv. 2015. V. 22. № 3. P. 231–242. https://doi.org/10.3109/10717544.2014.882469
- Nandi U., Onyesom I., Douroumis D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells // J. Pharm. Pharmacol. 2021. V. 73. № 3. P. 300–309. https://doi.org/10.1093/jpp/rgaa061
- El Knidri H., Dahmani J., Addaou A. et al. Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetylation degree and molecular weight // Int. J. Biol. Macromol. 2019 V. 139. P. 1092–1102. https://doi.org/10.1016/j.ijbiomac.2019.08.079
- Sawant R.M., Hurley J.P., Salmaso S., et al. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers // Bioconjug. Chem. 2006. V. 17. № 4. P. 943–949. https://doi.org/10.1021/bc060080h
- Zong W., Hu Y., Su Y. et al. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers // J. Microencapsul. 2016. V. 33. № 3. P. 257–262. https://doi.org/10.3109/02652048.2016.1156176
- Sandler S.E., Fellows B., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications // Anal. Chem. 2019. V. 91. № 22. P. 14159–14169. https://doi.org/10.1021/acs.analchem.9b03518
- Hadinoto K., Sundaresan, Cheow W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review // Eur. J. Pharm. Biopharm. 2013. V. 85. № 23. P. 427–443. https://doi.org/10.1016/j.ejpb.2013.07.002
- Fathy M.M., Fahmy H.M., Balah A.M.M. et al. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study // Life Sci. 2019. V. 234. P. 116787. https://doi.org/10.1016/j.lfs.2019.116787
- Dormer K., Seeney C., Lewelling K. et al. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field // Biomaterials. 2005. V. 26. № 14. P. 2061–2072. https://doi.org/10.1016/j.biomaterials.2004.06.040
- Li X., Li W., Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects // J. Control. Release. 2021. V. 335. P. 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042
- Ansari M.J., Kadhim M.M., Hussein B.A. et al. Synthesis and stability of magnetic nanoparticles // BioNa-noSci. 2022. V. 12. № 2. P. 627–638. https://doi.org/10.1007/s12668-022-00947-5
- Lyer S., Singh R., Tietze R. et al. Magnetic nanoparticles for magnetic drug targeting // Biomed. Tech. 2015. V. 60. № 5. P. 465–475. https://doi.org/10.1515/bmt-2015-0049
- Mireles L.K., Sacher E., Yahia L. et al. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation // Int. J. Biochem. Cell. Biol. 2016. V. 75. P. 203–211. https://doi.org/10.1016/j.biocel.2015.12.002
- Lassenberger A., Grünewald T.A., van Oostrum P.D.J., et al. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering // Chem. Mater. 2017. V. 29. № 10. P. 4511–4522. https://doi.org/10.1021/acs.chemmater.7b01207
- Israel L.L., Galstyan A., Holler E., Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain // J. Control. Release. 2020. V. 320. P. 45–62. https://doi.org/10.1016/j.jconrel.2020.01.009
- Vernaya O.I., Shumilkin A.S., Shabatin V.P. et al. The synthesis of maghemite nanoparticles by thermal decomposition of cryochemically modified iron (III) acetylacetonate // Mos. Univ. Chem. Bull. 2020. V. 75. P. 265–268. https://doi.org/10.3103/S0027131420050089
- Pigareva V.A., Alekhina Y.A. Grozdova I.D. et al. Magneto-sensitive and enzymatic hydrolysis-resistant systems for the targeted delivery of paclitaxel based on polylactide micelles with an external polyethylene oxide corona // Polym. Int. 2021. V. 71. № 4. P. 456–463. https://doi.org/10.1002/pi.6306
- Abdollah M.R., Kalber T., Tolner B. et al. Prolonging the circulatory retention of SPIONs using dextran sulfate: In vivo tracking achieved by functionalisation with near-infrared dyes // Faraday Discuss. V. 2014. V. 175. P. 41–58. https://doi.org/10.1039/c4fd00114a
- Saravanakumar K., Sathiyaseelan A., Manivasagan P. et al. Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms // Biomater. Adv. 2022. V. 141. P. 213129. https://doi.org/10.1016/j.bioadv.2022.213129
- Ramnandan D., Mokhosi S., Daniels A. et al. Chitosan, polyethylene glycol and polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in doxorubicin delivery: A comparative study in vitro // Molecules. 2021. V. 26. № 13. P. 3893. https://doi.org/10.3390/molecules26133893
- Rajan A., Sharma M., Sahu N.K. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia // Sci. Rep. 2020. V. 10. № 1. P. 15045. https://doi.org/10.1038/s41598-020-71703-6
- Wang X., Wang Y., Xue Z. et al. Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment // J. Colloid Interface Sci. 2023. V. 636. P. 388–400. https://doi.org/10.1016/j.jcis.2023.01.007
- Halevas E., Mavroidi B., Swanson C.H. et al. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential // J. Inorg. Biochem. 2019. V. 199. P. 110778. https://doi.org/10.1016/j.jinorgbio.2019.110778
- Soares F.A., Costa P., Sousa C.T. et al. Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models // Biochim. Biophys. Acta Biomembr. 2023. V. 1865. P. 184115. https://doi.org/10.1016/j.bbamem.2022.184115
- Monnier C.A., Burnand D., Rothen-Rutishauser B. et al. Magnetoliposomes: Opportunities and challenges // Eur. J. Nanomed. 2014. V. 6. № 4. P. 201–215. https://doi.org/10.1515/ejnm-2014-0042
- Floris A., Ardu A., Musinu A., et al. SPION@ liposomes hybrid nanoarchitectures with high density SPION association // Soft Matter. 2011. V. 7. № 13. P. 6239–6247. https://doi.org/10.1039/C1SM05059A
- Amstad E., Kohlbrecher J., Muller E. et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes // Nano Lett. 2011. V. 11. № 4. P. 1664–1670. https://doi.org/10.1021/nl2001499
- Choi W.I., Sahu A., Wurm F.R. et al. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells // RSC Adv. 2019. V. 9. № 26. P. 15053–15060. https://doi.org/10.1039/c9ra02529d
- Hermann C.A., Hofmann C., Duerkop A. et al. Magnetosomes for bioassays by merging fluorescent liposomes and magnetic nanoparticles: Encapsulation and bilayer insertion strategies // Anal. Bioanal. Chem. 2020. V. 412. P. 6295–6305. https://doi.org/10.1007/s00216-020-02503-0
- Pradhan P., Banerjee R., Bahadur D., Koch C., Mykhaylyk, O., Plank C. Targeted magnetic liposomes loaded with doxorubicin. In: D’Souza, G. (eds) Liposomes. Methods in Molecular Biology. V. 1522. Humana Press. New York. NY. 2017.
- Thomsen L.B., Linemann T., Birkelund S. et al. Evaluation of targeted delivery to the brain using magnetic immunoliposomes and magnetic force // Materials. 2019. V. 31. № 21. P. 3576. https://doi.org/10.3390/ma12213576
- Gao W., Wei S., Li Z. et al. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy // Nanotechnology. 2020. V. 31. P. 355104. https://doi.org/10.1088/1361-6528/ab92c8
- Yang R., An L.Y., Miao Q.F. et al. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes // Oncotarget. 2016. V. 7. № 24. P. 35894. https://doi.org/10.18632/oncotarget.9116
- Thébault C.J., Ramniceanu G., Michel A. et al. In vivo evaluation of magnetic targeting in mice colon tumors with ultra-magnetic liposomes monitored by MRI // Mol. Imaging. Biol. 2019. V. 21. P. 269–278. https://doi.org/10.1007/s11307-018-1238-3
- Ma G., Kostevšek N., Monaco I. et al. PD1 blockade potentiates the therapeutic efficacy of photothermally-activated and MRI-guided low temperature-sensitive magnetoliposomes // J. Control Release. 2021. V. 332. P. 419–433. https://doi.org/10.1016/j.jconrel.2021.03.002
- Luiz M.T., Dutra J.A.P., Viegas J.S.R. et al. Hybrid magnetic lipid-based nanoparticles for cancer therapy // Pharmaceutics. 2023. V. 15. № 23. P. 751. https://doi.org/10.3390/pharmaceutics15030751
- Gogoi M., Jaiswal M.K., Sarma H.D. et al. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy // Integr. Biol. 2017 V. 9. № 6. P. 555–565. https://doi.org/10.1039/c6ib00234j
- Farzin A., Etesami S.A., Quint J. et al. Magnetic nanoparticles in cancer therapy and diagnosis // Adv. Healthc. Mater. 2020. V. 9. № 9. P. 1901058. https://doi.org/10.1002/adhm.201901058
- Alonso J., Khurshid H., Devkota J. et al. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection // J. Appl. Phys. 2016. V. 119. P. 083904. https://doi.org/10.1063/1.4942618
- Oliveira R.R., Carrião M.S., Pacheco M.T. et al. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia // Mater. Sci. Eng. C. 2018. V. 92. P. 547–553. https://doi.org/10.1016/j.msec.2018.07.011
- Cardoso B.D., Rodrigues A.R.O., Bañobre-López M. et al. Magnetoliposomes based on shape anisotropic calcium/magnesium ferrite nanoparticles as nanocarriers for doxorubicin // Pharmaceutics. 2021. V. 13. № 8. P. 1248. https://doi.org/10.3390/pharmaceutics13081248
- Fortes Brollo M.E., Domínguez-Bajo A., Tabero A. et al. Combined magnetoliposome formation and drug loading in one step for efficient alternating current-magnetic field remote-controlled drug release // ACS Appl. Mater. Interfaces. 2020. V. 12. № 4. P. 4295–4307. https://doi.org/10.1021/acsami.9b20603
- Khomutov G.B., Kim V.P., Koksharov Y.A. et al. Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles // Colloid. Surf. A. 2017. V. 532. P. 26–35. https://doi.org/10.1016/j.colsurfa.2017.07.035
- Gulyaev Y.V., Cherepenin V.A., Taranov I.V. et al. Activation of nanocomposite liposomal capsules in a conductive water medium by ultra-short electric exposure // J. Commun. Technol. Electr. 2021. V. 66. P. 88–95. https://doi.org/10.1134/S1064226921010022
- Trilli J., Caramazza L., Paolicelli P. et al. The impact of bilayer rigidity on the release from magnetoliposomes vesicles controlled by PEMFs // Pharmaceutics. 2021. V. 13. № 10. P. 1712. https://doi.org/10.3390/pharmaceutics13101712
- Dwivedi P., kiran S., Han S. et al. Magnetic targeting and ultrasound activation of liposome-microbubble conjugate for enhanced delivery of anticancer therapies // ACS Appl. Mater. Interfaces 2020. V. 12. № 21. P. 23737–23751. https://doi.org/10.1021/acsami.0c05308
- Sybachin A.V., Khlynina P.O., Spiridonov V.V. et al. Amino-terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drug-loaded anionic liposomes // Polym. Int. 2018. V. 67. № 10. P. 1352–1358. https://doi.org/10.1002/pi.5629
- Shete M.B., Patil T.S., Deshpande A. et al. Current trends in theranostic nanomedicines // J. Drug Delivery Sci. Tech. 2022. V. 71. P. 103280. https://doi.org/10.1016/j.jddst.2022.103280
- Skupin-Mrugalska P., Sobotta L., Warowicka A. et al. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer // J. Inorg. Biochem. 2018. V. 180. P. 1–14. https://doi.org/10.1016/j.jinorgbio.2017.11.025
- Li J., Li Q., He M. et al. AS1411 aptamer-modified theranostic liposomes co-encapsulating manganese oxide nano-contrast agent and paclitaxel for MRI and therapy of cancer // RSC Adv. 2019. V. 9. № 60. P. 34837–34846. https://doi.org/10.1039/c9ra06878c
- Šimečková P., Hubatka F., Kotouček J. et al. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: In vitro safety study in liver cells and macrophages // Sci. Rep. 2020. V. 10. № 1. P. 4780. https://doi.org/10.1038/s41598-020-60284-z
- Chen Q., Shang W., Zeng C., et al. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes // Oncotarget. 2017. V. 8. № 20. P. 32741. https://doi.org/10.18632/oncotarget.15642
- Thébault C.J., Ramniceanu G., Boumati S. et al. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P // J. Control. Release. 2020. V. 322. P. 137–148. https://doi.org/10.1016/j.jconrel.2020.03.003
- Guo H., Chen W., Sun X. et al. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field // Carbohydr. Polym. 2015. V. 118. P. 209–217. https://doi.org/10.1016/j.carbpol.2014.10.076
Дополнительные файлы
