MICRONUTRIENTS INFLUENCE ON GROWTH AND DEVELOPMENT OF TAGETES PATULA L. ON THE ZOOHUMUS PHONE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The work is devoted to the assessment of changes in biometric indices of Tagetes patula plant growth under the influence of increasing doses of pre-sowing treatments of plant seeds with saline solutions of selenium Na2SeO3·(H2O)5 and silicon Na2SiO3·(H2O)5 against the background of the introduction of a liquid extract of zoohumus, a product of the vital activity of Hermetia illucens larvae, into the substrate. The following concentrations of microelements in terms of salts were used for the treatment: Se 5–10–20–30 ppm and Si 50–100–200–300 ppm. The results of measuring the mineral composition of dry zoohumus powder, as well as regulatory changes in plant morphometry under the influence of the introduction of its 1.0% alkaline suspension into the substrate, are presented. The processes of formation of shoot height and root system length were assessed. As a result, the introduction of the zoohumus suspension in the variant with silicon reduced the growth of shoots, with an increase in the length of the root system. The highest plant biomass was obtained at a concentration of 300 ppm Si with the addition of zoohumus. Moreover, a large share in the increase in the total phytomass was due to an increase in the weight of the roots. The increase in biomass was 38% (from 6.50 to 9.00 g). Seed treatment with a silicon compound against the background of zoohumus also increased the length of the root system by 39% (from 15.36 to 21.37 cm). The weight and length of the shoots decreased. Since silicon is mainly absorbed by the roots, it can be assumed that the humic compounds included in the zoohumus contributed to the redistribution of its accumulation in the underground part of plants in the form of a chelate Si-organic group. Separate treatment of seeds with silicon at a concentration of 300 ppm showed comparable results in increasing shoot weight as when growing plants on the background of zoohumus without treating seeds with this microelement. Thus, this concentration of Si can be recommended as an additional trigger for stimulating rhizogenesis and inclusion in the composition of zoocompost. The addition of selenium at all selected concentrations and backgrounds, on the contrary, inhibited shoot growth and root development, from which it can be concluded that these concentrations should either be reduced or their less toxic nanoforms should be used.

Sobre autores

S. Loskutov

All-Russian Research Institute of Food Additives — branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatova

Email: email@example.com
PhD in Agricultural Sciences, Head of the Laboratory St. Petersburg, Russia

Ya. Puhalsky

All-Russian Research Institute of Food Additives — branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatova

Email: puhalskyyan@gmail.com
Researcher St. Petersburg, Russia

A. Osipov

Agrophysical Institute of the Russian Academy of Agricultural Sciences

Email: email@example.com
Grand PhD in Agricultural Sciences, Professor, Chief Researcher St. Petersburg, Russia

A. Yakubovskaya

Federal State Budgetary Scientific Institution «Research Institute of Agriculture of Crimea»

Email: email@example.com
PhD in Biological Sciences, Leading Researcher Simferopol, Republic of Crimea, Russia

I. Kameneva

Federal State Budgetary Scientific Institution «Research Institute of Agriculture of Crimea»

Email: email@example.com
PhD in Engineering Sciences, Leading Researcher, Head of the Laboratory Simferopol, Republic of Crimea, Russia

Bibliografia

  1. Безручко Е.В. Кремний – недооцененный элемент питания растений // Земледелие. 2020. № 4. С. 40–46. https://doi.org/10.24411/0044-3913-2020-10411
  2. Bezruchko E.V. Kremnij – nedoocenennyj element pitaniya rastenij // Zemledelie. 2020. № 4. S. 40–46. https://doi.org/10.24411/0044-3913-2020-10411
  3. Давидова О.Є. Вешицький В.А., Яворівський П.П. Фізіолого-біохімічні та стреспротекторні функції селену в рослинах // Физиология и биохимия культурных растений. 2009. № 41(2). C. 109–123.
  4. Davidova O.Є. Veshic’kij V.A., Yavorіvs’kij P.P. Fіzіologobіohіmіchnі ta stresprotektornі funkcії selenu v roslinah // Fiziologiya i biohimiya kul’turnyh rastenij. 2009. № 41(2). C. 109–123.
  5. Иванова М.И., Кашлева А.И., Разин А.Ф., Разин О.А. Съедобные цветки – новый перспективный источник фитонутриентов в питании человека // Пищевая промышленность. 2016. № 9. С. 30–32.
  6. Ivanova M.I., Kashleva A.I., Razin A.F., Razin O.A. S”edobnye cvetki – novyj perspektivnyj istochnik fitonutrientov v pitanii cheloveka // Pishchevaya promyshlennost’. 2016. № 9. S. 30–32.
  7. Колесников С.И., Казеев К.Ш., Вальков В.Ф., Пономарева С.В. Ранжирование химических элементов по их экологической опасности для почвы // Доклады Российской академии сельскохозяйственных наук. 2010. № 1. С. 27–29.
  8. Kolesnikov S.I., Kazeev K.Sh., Val’kov V.F., Ponomareva S.V. Ranzhirovanie himicheskih elementov po ih ekologicheskoj opasnosti dlya pochvy // Doklady Rossijskoj akademii sel’skohozyajstvennyh nauk. 2010. № 1. S. 27–29.
  9. Комиссаренков А.А., Пругло Г.Ф., Фёдоров В.А. Потенциометрия: учебно-методическое пособие. СПб.: СПб ГТУРП, 2013. 64 с.
  10. Komissarenkov A.A., Pruglo G.F., Fyodorov V.A. Potenciometriya: uchebno-metodicheskoe posobie. SPb.: SPb GTURP, 2013. 64 s.
  11. Леконцева Т.Г., Федоров А.В. Влияние оксида кремния (SiO2) на адаптацию микрорастений роз (Rose L.) сорта Reine Sammut // Аграрная наука Евро-Северо-Востока. 2022. 23(6). С. 814–821. https://doi.org/10.30766/2072-9081.2022.23.6.814-821
  12. Lekonceva T.G., Fedorov A.V. Vliyanie oksida kremniya (SiO2) na adaptaciyu mikrorastenij roz (Rose L.) sorta Reine Sammut // Agrarnaya nauka Evro-Severo-Vostoka. 2022. 23(6). S. 814–821. https://doi.org/10.30766/2072-9081.2022.23.6.814-821
  13. Методика выполнения измерений массовой доли элементов в породах почв, грунтов и донных отложениях методами атомно-эмиссионной и атомно-абсорбционной спектрометрии. С.-Пб. 2008. 36 с.
  14. Metodika vypolneniya izmerenij massovoj doli elementov v porodah pochv, gruntov i donnyh otlozheniyah metodami atomno-emissionnoj i atomno-absorbcionnoj spektrometrii. S.-Pb. 2008. 36 s.
  15. Пендюрин Е.А., Здоровцов В.А., Рыбина С.Ю., Святченко А.В. Агрохимические характеристики зоокомпоста личинок насекомого Черная львинка // Агрохимический вестник. 2024. № 3. С. 59–62. https://doi.org/10.24412/1029-2551-2024-3-010
  16. Pendyurin E.A., Zdorovcov V.A., Rybina S.Yu., Svyatchenko A.V. Agrohimicheskie harakteristiki zookomposta lichinok nasekomogo Chernaya l’vinka // Agrohimicheskij vestnik. 2024. № 3. S. 59–62. https://doi.org/10.24412/1029-2551-2024-3-010
  17. Пендюрин Е.А., Сапронова Ж.А., Токач Ю.Е. Зоокомпост личинок мухи черная львинка как влагоудерживающий агент в почвах // Природообустройство. 2023. № 3. С. 59–65. https://doi.org/10.26897/1997-6011-2023-3-59-65
  18. Pendyurin E.A., Sapronova Zh.A., Tokach Yu.E. Zookompost lichinok muhi chernaya l’vinka kak vlagouderzhivayushchij agent v pochvah // Prirodoobustrojstvo. 2023. № 3. S. 59–65. https://doi.org/10.26897/1997-6011-2023-3-59-65
  19. Пендюрин Е.А., Рыбина С.Ю., Смоленская Л.М. Использование зоокомпоста Черной львинки в качестве органического удобрения // Аграрная наука. 2020. № 340(7). С. 106–110. https://doi.org/10.32634/0869-8155-2020-340-7-106-110
  20. Pendyurin E.A., Rybina S.Yu., Smolenskaya L.M. Ispol’zovanie zookomposta Chernoj l’vinki v kachestve organicheskogo udobreniya // Agrarnaya nauka. 2020. № 340 (7). S. 106–110. https://doi.org/10.32634/0869-8155-2020-340-7-106-110
  21. Побилат А.Е., Волошин Е.И. Особенности содержания селена в системе почва – растение (обзор) // Вестник КрасГАУ. 2020. № 11(164). С. 98–105. https://doi.org/10.36718/1819-4036-2020-11-98-105
  22. Pobilat A.E., Voloshin E.I. Osobennosti soderzhaniya selena v sisteme pochva – rastenie (obzor) // Vestnik KrasGAU. 2020. № 11(164). S. 98–105. https://doi.org/10.36718/1819-4036-2020-11-98-105
  23. Синдирева А.В., Мангутова А.К., Швец Е.С. Влияние селенита и селената натрия на рост и развитие растений // Проблемы региональной экологии. 2023. № 6. С. 87–95. https://doi.org/10.24412/1728-323X-2023-6-87-95
  24. Sindireva A.V., Mangutova A.K., Shvec E.S. Vliyanie selenite i selenata natriya na rost i razvitie rastenij // Problemy regional’noj ekologii. 2023. № 6. S. 87–95. https://doi.org/10.24412/1728-323X-2023-6-87-95
  25. Сиухина М.С., Быкова С.Л. Методы почвенных исследований: учеб.-метод. пособие. Новосибирск: ИЦ НГАУ «Золотой колос», 2016. 174 с.
  26. Siuhina M.S., Bykova S.L. Metody pochvennyh issledovanij: ucheb.-metod. posobie. Novosibirsk: IC NGAU «Zolotoj kolos », 2016. 174 s.
  27. Удалова Ж.В., Зиновьева С.В. Влияние внекорневой обработки растений томатов микроэлементами на заражение галловой нематодой // Теория и практика борьбы с паразитарными болезнями. 2021. № 22. С. 520–525. https://doi.org/10.31016/978-5-6046256-1-3.2021.22.520-525
  28. Udalova Zh.V., Zinov’eva S.V. Vliyanie vnekornevoj obrabotki rastenij tomatov mikroelementami na zarazhenie gallovoj nematodoj // Teoriya i praktika bor’by s parazitarnymi boleznyami. 2021. № 22. S. 520–525. https://doi.org/10.31016/978-5-6046256-1-3.2021.22.520-525
  29. Юркова И.Н., Панов Д.А., Омельченко А.В. и др. Протекторное действие нанобиокомпозита селена при предпосевной обработке семян на рост и развитие однолетней культуры Tagetes patula L. в условиях солевого стресса // Экосистемы. 2022. № 29. С. 130–141.
  30. Yurkova I.N., Panov D.A., Omel’chenko A.V. i dr. Protektornoe dejstvie nanobiokompozita selena pri predposevnoj obrabotke semyan na rost i razvitie odnoletnej kul’tury Tagetes patula L. v usloviyah solevogo stressa // Ekosistemy. 2022. № 29. S. 130–141.
  31. Anandhi S., Sudharshini P., Parkavi. E. et al. Effect of silicon dioxide nano fertilizer on the growth and yield marigold (Tagetes erecta. L) // Journal of Harbin Engineering University. 2023. № 44 (8). P. 1712–1718.
  32. Attia E., Elhawat N. Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.) // Scientia Horticulturae. 2021. № 282 (27). 110015. https://doi.org/10.1016/j.scienta.2021.110015
  33. Goodwin C., Hay-Roe M.M. Black Soldier Fly Larva (Hermetia illucens) Frass vs. Red Wiggler (Eisenia fetida) Castings on (Capsicum annum) “Early Jalapeno” Seedling Growth // UF Journal of Undergraduate Research. 2022. № 24. P. 1–18. https://doi.org/10.32473/ufjur.24.130728
  34. Heather A.C., Carole C.P. Silica in plants: Biological, biochemical and chemical studies // Annals of Botany. 2007. № 100 (7). P. 1383–1389. https://doi.org/10.1093/aob/mcm247
  35. Hosseinzadeh Rostam Kalaei M., Abdossi V., Danaee E. Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant // Scientific Reports. 2022. № 12 (1). 12568. https://doi.org/10.1038/s41598-022-16241-z
  36. Jalilzadeh Khoie E., Jabbarzadeh Z., Norouzi P. et al. Silicon spray affect floricultural traits and leaf elemental nutrient concentrations of rose Beverly Watson // Journal of Plant Nutrition. 2024. № 47 (1). P. 145–156. https://doi.org/10.1080/01904167.2023.2262513
  37. Kleiber T., Borowiak K., Kosiada T. et al. Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species // Open Chemistry. 2020. № 18 (1). P. 1468–1480. https://doi.org/10.1515/chem-2020-0183
  38. Kumari P., Sharma R., Panwar S. et al. Silicon as vital element in flower crop production // Journal of Plant Nutrition. 2023. № 46 (11). P. 2747–2762. https://doi.org/10.1080/01904167.2022.2160739
  39. Song J., Yang J., Jeong B.R. Synergistic Effects of Silicon and Preservative on Promoting Postharvest Performance of Cut Flowers of Peony (Paeonia lactiflora Pall.) // International Journal of Molecular Sciences. 2022. № 23 (21). 13211. https://doi.org/10.3390/ijms232113211

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.