Composite photocatalysts g-C3N4/TiO2 for hydrogen production and dye decomposition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The photocatalytic activity of the g-C3N4 /TiO2 composite samples in the processes of dye (methylene blue) decomposition and hydrogen evolution from an aqueous ethanol solution under the action of visible radiation (400 nm) has been studied. A new original method for the synthesis of the g-C3N4 /TiO2 composite by depositing g-C3N4 /TiO2 to TiO2 nanoparticles during sol-gel synthesis is proposed. The synthesized photocatalysts were characterized by X-ray diffraction, low-temperature gas adsorption, X-ray photoelectron spectroscopy, high-resolution transmission microscopy, and diffuse reflectance spectroscopy in the UV and visible regions. The maximum activity in the hydrogen evolution reaction was 1.3 mmol h–1, which exceeds the rate of hydrogen evolution on the unmodified g-C3N4 and TiO2 samples.

全文:

受限制的访问

作者简介

A. Zhurenok

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: kozlova@catalysis.ru
俄罗斯联邦, Acad. Lavrentiev pr., 5, Novosibirsk, 630090

A. Sushnikova

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: kozlova@catalysis.ru
俄罗斯联邦, Amundsena st., 101, Yekaterinburg, 620016

A. Valeeva

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kozlova@catalysis.ru
俄罗斯联邦, Pervomayskaya st., 91, Yekaterinburg, 620990

A. Kurenkova

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: kozlova@catalysis.ru
俄罗斯联邦, Acad. Lavrentiev pr., 5, Novosibirsk, 630090

D. Mishchenko

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Boreskov Institute of Catalysis

Email: kozlova@catalysis.ru

Multiaccess Center “SKIF“

俄罗斯联邦, Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Nikolskii pr., 5, Koltsovo, 630559

E. Kozlova

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kozlova@catalysis.ru
俄罗斯联邦, Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Amundsena st., 101, Yekaterinburg, 620016

A. Rempel’

Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: kozlova@catalysis.ru
俄罗斯联邦, Amundsena st., 101, Yekaterinburg, 620016

参考

  1. Sun W., Zhu J., Zhang M., Meng X., Chen M., Feng Y., Chen X., Ding Y. // Chin. J. Catal. 2022. V. 43. P. 2273.
  2. Zhang S., Wang K., Li F., Ho S.H. // Int. J. Hydrogen Energy. 2022. V. 47. P. 37517.
  3. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L, Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. P. 214331.
  4. Любина Т.П., Козлова Е.А. // Кинетика и катализ. 2012. Т. 53. № 2. С. 197. (Lyubina T.P., Kozlova E.A. // Kinet. Catal. 2012. V. 53. № 2. P. 188).
  5. Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Kurenkova A.Y., Saraev А., Schroettner H., Rempel А. // Int. J. Hydrogen Energy. 2021. V. 46. P. 16917.
  6. Rempel A.A., Valeeva A.A. // Russ. Chem. Bull. 2019. V. 68. P. 2163.
  7. Valeeva A.A., Rempel A.A., Rempel S.V., Sadovnikov S.I., Gusev A.I. // Russ. Chem. Rev. 2021. V. 90. P. 601.
  8. Yang H. // Mater. Res. Bull. 2021. V. 142. P. 111406.
  9. Su Y.W., Lin W.H., Hsu Y.J., Wei K.H. // Small. 2014. V. 10. P. 4427.
  10. Patial S., Raizada P., Hasija V., Singh P., Thakur V.K., Nguyen V.H. // Mater. Today Energy. 2021. V. 19. P. 100589.
  11. Xu J., Shen J., Jiang H., Yu X., Ahmad Qureshi W., Maouche C,; Gao J., Yang J., Liu Q. // J. Ind. Eng. Chem. 2023. V. 119. P. 112.
  12. Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin G.A.N., Hidayat S., Takei T., Kumada N., Rahayu I. // Nanomater. 2023. V.13. P. 704.
  13. Rafique M., Hajra S., Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. // ACS Omega. 2023. V. 8. P. 25640.
  14. Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. // Russ. Chem. Rev. 2021. V. 90. P. 1397.
  15. Dorosheva I.B., Valeeva A.A., Rempel A.A., Trestsova M.A., Utepova I.A., Chupakhin O.N. // Inorg. Mater. 2021. V. 57. P. 503.
  16. Fujishima A., Rao T.N., Tryk D.A. // J. Photochem. Photobiol. C: Photochem. Rev. 2000. V. 1. P. 1.
  17. Yan H., Wang X., Yao M., Yao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. P. 402.
  18. Qiang W., Qu X., Chen C., Zhang L., Sun D. // Mater. Today Commun. 2022. V. 33. 104216.
  19. Cheng Y., Gao J., Shi Q., Li Z., Huang W. // J. Alloys Compd. 2022. V. 901. P. 163562.
  20. Ansari F., Sheibani S., Fernandez-García M. // J. Alloys Compd. 2022. V. 919. P. 165864.
  21. Yin Z., Zhang X., Yuan X., Wei W., Xiao Y., Cao S. // J. Clean. Prod. 2022. V. 375. P. 134112.
  22. Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C. // J. Photochem. Photobiol. C: Photochem. Rev. 2015. V. 25. P. 1.
  23. Tang Z., Xu L., Shu K., Yang J., Tang H. // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 642. P. 128686.
  24. Sabir M., Rafiq K., Abid M.Z., Quyyum U., Shah S.S.A., Faizan M., Rauf A., Iqbal S., Hussain E. // Fuel. 2023. V. 353. P. 129196.
  25. Luo T., Sun X., Ma D., Wang G., Yang F., Zhang Y., Huang J., Zhang H., Wang J., Peng F. // J. Phys. Chem. C. 2023. V. 127. P. 1372.
  26. Shi Q., Zhang X., Li Z., Raza A., Li G. // ACS Appl. Mater. Interfaces. 2023. V. 15. P. 30161.
  27. Zhang H., Su T., Yu S., Liao W., Ren W., Zhu Z., Yang K., Len C., Dong G., Zhao D., Lü H. // Mol. Catal. 2023. V. 536. P. 112916.
  28. Priya B.A., Sivakumar T., Venkateswari P. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 6646.
  29. Li Y., He Z., Liu L., Jiang Y., Ong W.J., Duan Y., Ho W., Dong F. // Nano Energy. 2023. V. 105. P. 108032.
  30. Wang J., Wang S. // Coord. Chem. Rev. 2022. V. 453. P. 214338.
  31. Dong G., Zhang Y., Pan Q., Qiu J. // J. Photochem. Photobiol. C: Photochem. Rev. 2014. V. 20. P. 33.
  32. Sun Y., Kumar V., Kim K.H. // Sep. Purif. Technol. 2023. V. 305. P. 122413.
  33. Kozlova E.A., Valeeva A.A., Sushnikova A.A., Zhurenok A.V., Rempel A.A. // Nanosyst. Phys. Chem. Math. 2022. V. 13. P. 632.
  34. Fina F., Callear S.K., Carins G.M., Irvine J.T.S. // Chem. Mater. 2015. V. 27. P. 2612.
  35. Qiu P., Chen H., Xu C., Zhou N., Jiang F., Wang X., Fu Y.J. // Mater. Chem. A. 2015. V. 3. P. 24237.
  36. Tang C., Cheng M., Lai C., Li L., Yang X., Du L., Zhang G., Wang G., Yang L. // Coord. Chem. Rev. 2023. V. 474. P. 214846.
  37. Mai W., Wen F., Xie D., Leng Y., Mu Z. // J. Adv. Ceram. 2014. V. 3. P. 49.
  38. Kaichev V.V., Chesalov Y.A., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2016. V. 338. P. 82.
  39. Kaichev V.V., Popova G.Y., Chesalov Y.A., Saraev A.A., Zemlyanov D.Y., Beloshapkin S.A., Knop-Gericke A., Schlögl R., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2014. V. 311. P. 59.
  40. Finetti P., Sedona F., Rizzi G.A., Mick U., Sutara F., Svec M., Matolin V., Schierbaum K., Granozzi G. // J. Phys. Chem. C. 2007. V. 111. P. 869.
  41. Hasegawa Y., Ayame A. // Catal. Today. 2001. V. 71. P. 177.
  42. Luan Z., Maes E.M., Van Der Heide P.A.W., Zhao D., Czernuszewicz R.S., Kevan L. // Chem. Mater. 1999. V. 11. P. 3680.
  43. Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 11392.
  44. Liu H., Chen D., Wang Z., Jing H., Zhang R. // Appl. Catal. B: Environ. 2017. V. 203. P. 300.
  45. Kumar Singh A., Das C., Indra A. // Coord. Chem. Rev. 2022. V. 465. P. 214516.
  46. Alcudia-Ramos M.A., Fuentez-Torres, M.O., Ortiz-Chi F., Espinosa-González C.G., Hernández Como N., García-Zaleta D.S., Kesarla M.K., Torres-Torres J.G., Collins-Martínez V., Godavarthi S. // Ceram. Int. 2020. V. 46. P. 38.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction patterns (a) and a graph in Tauc coordinates of the reflectance spectra (b) of the photocatalysts TiO2-as.pr., TiO2, g-C3N4 and g-C3N4/TiO2.

下载 (596KB)
3. Fig. 2. Ti2p (a) and N1s (b) spectra of the studied samples. The spectra are normalized to the integrated intensity of the peaks corresponding to the Ti2p spectra (in the case of TiO2 and g-C3N4/TiO2 composite photocatalysts) or the integrated intensity of the C1s peak corresponding to the g-C3N4 spectrum in the case of the unmodified g-C3N4 sample.

下载 (836KB)
4. Fig. 3. HRTEM images of samples g-C3N4 (a), TiO2 (b), 1% g-C3N4/TiO2-1 (c), 1% g-C3N4/TiO2-2 (d), 5% g-C3N4/ TiO2-1 (e), 5% g-C3N4/TiO2-2 (f).

下载 (2MB)
5. Fig. 4. Kinetic curves of hydrogen evolution from an aqueous solution of ethanol in the presence of photocatalysts with deposited platinum (a) and changes in the concentration of MS (b); changes

下载 (846KB)