Catalysis on Mono- and Bimetallic Nanoparticles of the Silver–Copper System CunAgm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of this work is to study the catalytic properties of mono- and bimetallic nanoparticles of the copper-silver system of variable composition supported on aluminum oxide in the conversion reactions of protium modifications and deuterium-hydrogen exchange. From a comparison of the temperature dependences of the specific catalytic activity of the samples in the two reactions under study, a conclusion was drawn about different reaction mechanisms. It has been shown that, compared to bulk metals, nanoparticles of the CunAgm composition have catalytic properties in a wide temperature range, up to 77 K. In the chemical reaction of isotope exchange in molecular hydrogen, a synergistic effect is observed, which indicates the interaction of metals in biparticles.

Full Text

Restricted Access

About the authors

M. B. Pshenitsyn

Dmitry Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: pshenmichail@gmail.com
Russian Federation, Miusskaya square, 9, Moscow, 125047

O. A. Boeva

Dmitry Mendeleev University of Chemical Technology of Russia

Email: pshenmichail@gmail.com
Russian Federation, Miusskaya square, 9, Moscow, 125047

A. S. Konopatsky

National University of Science and Technology “MISiS”

Email: pshenmichail@gmail.com
Russian Federation, Leninskiy prosp., 4, Moscow, 119049

A. Y. Antonov

Dmitry Mendeleev University of Chemical Technology of Russia

Email: pshenmichail@gmail.com
Russian Federation, Miusskaya square, 9, Moscow, 125047

K. N. Zhavoronkova

Dmitry Mendeleev University of Chemical Technology of Russia

Email: pshenmichail@gmail.com
Russian Federation, Miusskaya square, 9, Moscow, 125047

References

  1. Boeva O.A., Odintzov A.A., Solovov R.D., Abkhalimov E.V., Zhavoronkova K.N., Ershov B.G. // Int. J. Hydrogen Energy. 2017. V. 42. № 36. P. 22897.
  2. Abkhalimov E., Boeva O., Odintzov A., Solovov R., Zhavoronkova K., Ershov B. // NANOCON2017 – Conference Proceedings, 9th International Conference on Nanomaterials – Research and Application: 9. 2018. V. 2017. P. 308.
  3. Boeva O.A., Odintsov A.A., Zhavoronkova K.N. // J. Phys.: Conf. Ser. 2018. V. 1099. № 012027.
  4. Abkhalimov E.V., Boeva O.A., Odintzov A.A., Solovov R.D., Zhavoronkova K.N., Ershov B.G. // Catal. Commun. 2020. V. 133. P. 1058402021.
  5. Boeva O.A., Kudinova E.S., Panyukova N.S., Nesterova N.I., Zhavoronkova K.N. // J. Phys.: Conf. Ser. 2020. V. 1696. P. 012015.
  6. Boeva O.A., Antonov A.Y., Zhavoronkova K.N. // Catal. Commun. 2021. V. 148. P. 106173.
  7. Boeva O., Kudinova E., Vorakso I., Zhavoronkova K., Antonov A. // Int. J. Hydrogen Energy. 2022. V. 47. № 4. P. 4759.
  8. Haruta M., Yamada N., Kobayashi T., Iijima S. // J. Сatal. 1989. P. 175.
  9. Hutchings G.J. // Gold Bull. 1996. № 29. P. 123.
  10. Prati L., Martra G. // Gold Bull. 1999. № 32. P. 96.
  11. Fu Q., Weber A., Flytzani-Stephanopoulos M. // Catal. Lett. 2001. V. 77. № 1. P. 87.
  12. Wang D., Yang G., Ma Q., Wu M., Tan Y., Yoneyama Y., Tsubaki N. // ACS Catal. 2012. V. 2. № 9. P. 1958.
  13. Kaur R., Mehta S.K., Gradzielski M., Giordano C. // Chemistry – An Asian Journal. 2014. V. 9. № 1. P. 189.
  14. Бухтияров А.В., Стахеев А.Ю., Мытарева А.И., Просвирин И.П., Бухтияров В.И. // Изв. АН. Сер. хим. 2015. № 12. С. 2780.
  15. Naseem K., Begum R., Farooqi Z.H., Wu W., Irfan A. // Appl. Organomet. Chem. 2020. V. 34. № 9. P. 5742.
  16. Андерсен Дж. Р. Структура металлических катализаторов. Москва: Мир, 1978. 482 с. (Anderson J.R. Structure of metallic catalysts. Academic Press. 1975. 469 p.)
  17. Sergeev M.O., Revina A.A., Busev S.A., Zolotarevskiy V.I., Zhavoronkova K.N., Boeva O.A. // Nanotechnol. Rev. 2014. V. 3. № 5. P. 515.
  18. Bystrova O.S., Boeva O.A. // Theor. Found. Chem. Eng. 2008. V. 42. № 5. P. 627.
  19. Chen Y., Fan S., Chen J., Deng L., Xiao Z. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 7. P. 9106.
  20. Bond G.C., Namijo S.N., Wakeman J.S. // J. Mol. Catal. 1991. V. 64. № 3. P. 305.
  21. Zhu B.O., Chen P., Luo M., Yuan X., Wu H., Lu G. // Acta Chimica Sinica. 1997. V. 55. № 1. P. 42.
  22. Lee J.H., Lee B.J., Lee D.W., Choung J.W., Kim C.H., Lee K.Y. // Fuel. 2020. V. 275. P. 117930.
  23. Czaplinska J., Sobczak I., Ziolek M. // J. Phys. Chem. C. 2014. V. 118. № 24. P. 12796.
  24. Aboukaïs A., Skaf M., Hany S., Cousin R., Aouad S., Labaki M., Abi-Aad E. // Mater. Chem. Phys. 2016. V. 177. P. 570.
  25. Zhang R., Kaliaguine S. // Appl. Catal. B: Environ. 2008. V. 78. № 3–4. P. 275.
  26. Бухтияров А.В., Просвирин И.П., Четырин И.А., Сараев А.А., Каичев В.В., Бухтияров В.И. // Кинетика и катализ. 2016. Т. 57. № 5. С. 711.
  27. Eley D.D., Norton P.R. // Discus. Faraday Soc. 1966. V. 41. P. 135.
  28. Ридил Э. Развитие представлений в области катализа. Пер. с англ. Москва: Мир, 1971. 251 с. (Eric K. Rideal. Concepts in Catalysis. Academic P. 1968. 194 p.)
  29. Breakspere R.J., Eley D.D., Norton P.R. // J. Catal. 1972. V. 27. № 2. P. 215.
  30. Жаворонкова К.Н. Низкотемпературный изотопный обмен в молекулярном водороде и орто-пара конверсия протия на пленках металлов и интерметаллидов. Дисс. … д. х. н. Москва: Российский химико-технологический университет им. Д.И. Менделеева, 2009.
  31. Rideal E.K. // Journal of the Research Institute for Catalysis Hokkaido University. 1968. V. 16. № 1. P. 45.
  32. Scholten J.J.F., Konvalinka J.A. // J. Catal. 1966. V. 5. № 1. P. 1.
  33. Рожков И.В., Алмазов О.А., Ильинский А.А. Получение жидкого водорода. Москва: Химия, 1967. 198 с.
  34. Жаворонкова K.Н., Боева О.А., Теракова А.С. // Химическая промышленность. 1999. № 4. С. 66.
  35. Zhavoronkova K.N., Boeva O.A. // React. Kinet. Catal. Lett. 1989. V. 40. № 2. P. 285.
  36. Cunningham C.M., Johnston H.L. // J. Am. Chem. Soc. 1958. V. 80. № 10. P. 2377.
  37. Буянов Р.А., Пармон В.Н. // Катализ в промышленности. 2017. Т. 17. № 5. С. 390.
  38. Жаворонкова K.Н., Боева О.А., Теракова А.С. // Химическая промышленность. 1999. № 4. С. 66.
  39. Zhavoronkova K.N. Boeva O.A. // React. Kinet. Catal. Lett. 1989. V. 40. № 2. P. 285.
  40. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718.
  41. Lukashin A., Eliseev A., Zhuravleva N., Vertegel A., Tretyakov Y., Lebedev O., Tendeloo G. // Mendeleev Commun. 2004. V. 14. № 4. P. 174.
  42. Ростовщикова Т.Н., Смирнов В.В., Кожевин В.М., Явсин Д.А., Гуревич С.А. // Российские нанотехнологии. 2007. Т. 2. № 1–2. С. 47.
  43. Одинцов А.А., Боева О.А., Сергеев М.О., Ревина А.А. // Российские нанотехнологии. 2013. Т. 8. № 9–10. С. 38. (Odintsov A.A., Boeva O.A., Sergeev M.O., Revina A.A. // Nanotechnologies in Russia. 2013. V. 8. P. 612.)
  44. Сергеев М.О., Антонов А.Ю., Одинцов А.А., Жаворонкова К.Н., Ревина А.А., Боева О.А. // Успехи в химии и химической технологии. 2012. Т. 26. № 7 (136). С. 28.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TEM images and size distributions of Cu, Ag monoparticles and CunAgm binary particles.

Download (1MB)
3. Fig. 2. TEM images of particles (a, c) and the result of fast Fourier transform (FFT) processing of the left particle (b).

Download (475KB)
4. Fig. 3. Superimposed elemental maps (a, c) of Cu (red dots) and Ag (green dots) with the corresponding HAADF images (b, d).

Download (1MB)
5. Fig. 4. TPV (a) and TPO (b) profiles on samples with Cu, Ag and CunAgm particles.

Download (456KB)
6. Fig. 5. Results of adsorption studies (77 K) of samples: orange columns – initial specific surface area, blue columns – stable specific surface area.

Download (146KB)
7. Fig. 6. Dependence of lgKud on 1000/T for a sample with Cu nanoparticles: red dots – deuterium-hydrogen exchange; green – magnetic conversion of protium.

Download (230KB)
8. Fig. 7. Dependence of lgKud on 1000/T for a sample with Ag nanoparticles: red dots – deuterium-hydrogen exchange; green – magnetic conversion of protium.

Download (242KB)
9. Fig. 8. Dependences of lgKud on 1000/T for samples with nanoparticles: a – Cu75Ag25, b – Cu50Ag50, c – Cu25Ag75: red dots – deuterium-hydrogen exchange; green – magnetic conversion of protium.

Download (1MB)
10. Fig. 9. Catalytic activity of bimetallic nanoparticles in the reaction of conversion of hydrogen modifications.

Download (150KB)
11. Fig. 10. Dependence of specific catalytic activity at –196°C on the composition of mono- and bimetallic nanoparticles in reactions: a – ortho-para-conversion of protium, b – deuterium-hydrogen exchange.

Download (234KB)