Technology of producing Mn-Si-Ba-Fe alloy by carbothermal method
- Autores: Salina V.A.1,2, Baisanov S.O.3, Tolokonnikova V.V.3
-
Afiliações:
- Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
- Ural State Mining University
- Chemical and Metallurgical Institute named after Zh. Abishev
- Edição: Nº 4 (2025)
- Páginas: 321–329
- Seção: Articles
- URL: https://stomuniver.ru/0235-0106/article/view/689772
- DOI: https://doi.org/10.31857/S0235010625040041
- ID: 689772
Citar
Texto integral



Resumo
The results of theoretical and experimental studies of the technology for producing a complex barium-containing ferroalloy based on manganese for out-of-furnace processing of metal products are presented. Ferroalloys containing barium are of the greatest interest due to the unique complex of its physical and physicochemical properties (solubility in liquid iron is 1.22∙10−4 at.% at T=1600K; relative modifying capacity 69.86∙105; Tm.p.Ba=983K; Tb.p.Ba=1910K; heat of interaction with iron is 212 kJ/mol; enthalpy of dissolution is 300 kJ/g-at at T=1700K). The diagrams of material ratios of the oxide BaO-SiO2-MnO-FeO and metallic Ba-Si-Mn-Fe systems were constructed to determine the rational ratio of the components of the charge and the composition of the alloy by the method of thermodynamic-diagram analysis. This is a simple method for studying phase patterns of complex systems taking into account the features of state diagrams. The values of the change in Gibbs energy (∆G0T) are determined in a homogeneous liquid-phase state using the Gibbs software package developed by scientists of the Chemical and Metallurgical Institute named after Zh. Abishev. The tie lines of coexisting phases are drawn according to Hess’s rule. It was established that the rational composition of the batch for obtaining an alloy with a barium content of more than 1.5% is located in the quasi-system Fe2SiO4-Ba2Si3O8-Mn2SiO4-SiO2, and the composition of the alloy is in the region of the tetrahedron FeSi-BaSi2-MnSi-Si. The large-scale laboratory tests of the smelting of a complex barium-containing ferroalloy based on manganese in an ore-thermal furnace with a transformer capacity of 200 kV×A by a slag-free carbothermal method were carried out on the basis of the results of a thermodynamic-diagram analysis. Manganese ore from the Mynaral deposit (71.67% Mn2O3), barite ore from the Zhumanai deposit (74.35% BaSO4), and quartzite from the Tekturmas deposit (97.05% SiO2) were used as initial raw materials. Chinese coke (82.70% Csol.) was used as a reducing agent. It was established that the transition of barium into the alloy is determined by the accompanying process of silicon reduction. It was determined that to obtain an alloy with 1.5% Ba, the ratio Si/(Mn+Fe) should be at the level of 0.6; for an alloy with a content of 10% Ba – 1.1.
Texto integral

Sobre autores
V. Salina
Vatolin Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural State Mining University
Autor responsável pela correspondência
Email: valentina_salina@mail.ru
Rússia, Ekaterinburg; Ekaterinburg
S. Baisanov
Chemical and Metallurgical Institute named after Zh. Abishev
Email: valentina_salina@mail.ru
Cazaquistão, Karaganda
V. Tolokonnikova
Chemical and Metallurgical Institute named after Zh. Abishev
Email: valentina_salina@mail.ru
Cazaquistão, Karaganda
Bibliografia
- Ryabchikov I.V., Mizin V.G., Andreev V.V. Kremnistye ferrosplavy i modifikatory novogo pokoleniya. Proizvodstvo i primenenie [Silicon ferroalloys and modifiers of new generation. Production and application]. – Chelyabinsk: Izd-vo Chelyab. gos. un-ta y, 2013. 295 P. [In Russian]
- Vatolin N.A., Lyakishev N.P., Zhuchkov V.I., Ryabchikov I.V., Lukin S.V. Proizvodstvo i primenenie barijsoderzhashchih ferrosplavov [Production and application of barium-containing ferroalloys] // Stal’. 1984. № 8. P. 38–41. [In Russian]
- Ryabchikov I.V., Mizin V.G., Lyakishev N.P., Dubrovin A.S. Ferrosplavy s redkozemel’nymi i shchelochnozemel’nymi metallami [Ferroalloys with rare earth and alkaline earth metals]. – M.: Metallurgiya, 1983. 272 P. [In Russian]
- Grigorovich K.V., Demin K.Y., Arsenkin A.M., Garber A.K. Prospects of the application of barium-bearning master alloys for the deoxidation and modification of a railroad metal // Russian Metallurgy. 2011. № 9. P. 912–920.
- Bakin I.V., Mikhailov G.G., Golubtsov V.A., Ryabchikov I.V., Dresvyankina L.V. Methods for improving the efficiency of steel modifying // Materials Science Forum. 2019. 936. P. 215–222.
- Ageev Yu.A., Archugov S.A. Issledovanie rastvorimosti shchelochnozemel’nyh metallov v zhidkom zheleze i splavah na ego osnove [Study of the solubility of alkaline earth metals in liquid iron and alloys based on it] // ZhPhCh. 1985. LIX. № 4. P. 838–841. [In Russian]
- Chernov V.S., Busol F.I. O mekhanizme modificirovaniya metallov [On the mechanism of metal modification] // Izv. AN SSR. Ser. Metally. 1975. № 2. P. 71–75. [In Russian]
- Ryabchikov I.V., Ahmadeev A.YU., Rogozhina T.V., Golubcov V.A. Sravnitel’naya raskislitel’naya i modificiruyushchaya sposobnost’ magniya i shchelochno-zemel’nyh elementov pri vnepechnoj obrabotke stali [Comparative deoxidizing and modifying capacity of magnesium and alkaline earth elements in extra-furnace steel treatment] // Stal’. 2008. № 12. P. 51–54. [In Russian]
- Termodinamicheskie konstanty veshchestv [Thermodynamic constants of substances]. Spravochnik / Pod red. V.P. Glushko. – M.: Nauka, 1979. IX. 574 P. [In Russian]
- Deryabin A.A., Pavlov V.V., Mogil’nyj V.V., Godik L.A., Cepelev V.S., Konashkov V.V., Gorkavenko V.V., Berestov E.Yu. Effektivnost’ nanotekhnologij modificirovaniya rel’sovoj stali bariem [Efficiency of nanotechnology for modifying rail steel with barium] // Stal’. 2007. № 11. P. 134–141. [In Russian]
- Mihajlov G.G., Chernova L.A. Termodinamicheskij analiz processov raskisleniya korrozionnostojkoj stali X18H10T kal’ciem i bariem [Thermodynamic analysis of deoxidation processes of corrosion-resistant steel X18H10T by calcium and barium] // Izv. vuzov. Chernaya metallurgiya. 1991. № 12. P. 37–40. [In Russian]
- Dubrovin A.S. Metallotermiya special’nyh splavov [Metallothermy of special alloys]. – Chelyabinsk: Izd-vo YuUrGU, 2002. 254 P. [In Russian]
- Pletneva E.D., Esin Yu.O., Litovskij V.V., Demin S.E. Ental’piya smesheniya shchelochno-zemel’nyh metallov s zhelezom i nikelem [Enthalpy of mixing of alkaline earth metals with iron and nickel] // Izv. Vuzov. Chernaya metallurgiya. 1985. № 8. P. 10–12. [In Russian]
- Belov B.F., Ryabchikov I.V., Babanin A.Ya., Bakin I.V., Mizin V.G. O prirode himicheskoj svyazi v splavah shchelochnozemel’nyh metallov [On the nature of chemical bonding in alkaline earth metal alloys] // Stal’. 2022. № 1. P. 7–11. [In Russian]
- Ryabchikov I.V., Mizin V.G., Lyakishev N.P., Dubrovin A.S. Ferrosplavy s redkozemel’nymi i shchelochnozemel’nymi metallami [Ferroalloys with rare earth and alkaline earth metals]. – M.: Metallurgiya, 1983. 272 P. [In Russian]
- Borodaenko L.N., Takenov T.D., Gabdullin T.G., Rozhkov A.S., Topil’skij P.V. Elektrotermiya s ispol’zovaniem domennyh shlakov alyumokremnistogo splava s kal’ciem i bariem dlya vnepechnoj obrabotki stali [Electrothermics using blast furnace slags of aluminum-silicon alloy with calcium and barium for out-of-furnace steel treatment] // Stal’. 1989. № 10. P. 42–45. [In Russian]
- Zhuchkov V.I., Lukin S.V. Tekhnologiya ferrosplavov so shchelochnozemel’nymi metallami [Technology of ferroalloys with alkaline earth metals]. – M.: Metallurgiya, 1990. 104 P. [In Russian]
- Privalov O.E. Issledovanie i osvoenie processa vyplavki ferrosilikobariya i ferrosiliciya s bariem v promyshlennyh usloviyah [Research and development of the process of smelting ferrosilicon barium and ferrosilicon with barium in industrial conditions]: avtoref. kand. tekhn. nauk: 24.08.2001. – Karaganda: ChMI im. Zh. Abisheva, 2001. 28 P. [In Russian]
- Salina V.A., Baisanov S.O., Tolymbekov M.Zh., Baisanov A.S. Sposob polucheniya silikomarganca s bariem [Method for obtaining silicomanganece with barium]. Innovacionnyj patent RK № 26279 ot 15.10.2012. Byul. № 10. [In Russian]
- Salina V.A., Baisanov S.O., Tolymbekov M.Zh., Baisanov A.S. Shihta dlya vyplavki silikomarganca s bariem [Charge for smelting silicomanganese with barium]. Innovacionnyj patent RK № 27916 ot 25.12.2013. Byul. № 12. [In Russian]
- Salina V.A., Baisanov S.O., Kasenov B.K., Tolokonnikova V.V. Razrabotka barijsoderzhashchego splava-modifikatora na osnove marganca [Development of a barium-containing manganese-based modifier alloy] // Stal’. 2014. № 9. P. 28–34. [In Russian]
- Salina V.A., Baisanov S.O., Tolymbekov M.Zh., Bajsanov A.S. Kompleksnyj splav [Complex alloy]. Innovacionnyj patent RK № 27056 ot 14.06.2013. Byul. № 6. [In Russian]
- Tokaeva Z.M., Baisanov S.O., Temirgaziev S.M., Salina V.A. Sravnitel’nyj analiz metodov opredeleniya bariya v splave novogo pokoleniya [Comparative alalysis of methods for determining barium in a new generation alloy] // Izv. NAN RK. Ser. himii i tekhnologii. 2011. № 5. P. 30–32. [In Russian]
Arquivos suplementares
