Reflection on hypotheses of the origin of life on Earth

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Hypotheses on the origin of life on Earth are discussed in the frame of alternative ideas concerning processes of abiogenesis, formation of protometabolic systems, beginnings of initial protocells. Arguments in favor of independent origin of archaea and bacteria are considered. Based on this information, a new view on the problem of life’s origin is presented. As supposed, life might have aroused multiple times and asynchronously in various local geochemical conditions dependent on many natural factors.

Sobre autores

S. Shestakov

Lomonosov Moscow State University, Faculty of Biology; Vavilov Institute of General Genetics, RAS

Email: shestakovgen@mail.ru
Leninskiye Gory, 1, bld. 12, Moscow, 119234 Russia; Gubkina str., 3, Moscow, 119991 Russia

Bibliografia

  1. Заварзин Г.А., 2010. Начальные этапы эволюции биосферы // Вестн. РАН. Т. 80. С. 1085–1098.
  2. Мухин Л.М., 2009. Условия на поверхности Земли 4–4.6 млрд лет назад: первичные синтезы // Происхождение жизни. М.: ПИН РАН. С. 120–130.
  3. Никитин М., 2021. Происхождение жизни. От туманности до клетки. М.: Изд. АНФ. 584 c.
  4. Шестаков С.В., 2003. О ранних этапах биологической эволюции с позиций геномики // Палеонт. журн. № 6. С. 50–57.
  5. Шестаков С.В., 2007. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий // Экол. генетика. Т. 5. № 2. С. 12–24.
  6. Шестаков С.В., Карбышева Е.А., 2019. О дискретном происхождения архей и бактерий // Эволюция биосферы с древнейших времен до наших дней. М.: ПИН РАН. С. 25–35.
  7. Шестаков С.В., Карбышева Е.А., 2024. К обсуждению гипотез о происхождении жизни // Новые технологии в медицине, биологии, фармакологии и экологии: Тр. XXXII Междунар. конф. NT + ME`24. Крым, Ялта-Гурзуф, 02–09 июня 2024 г. М.: ООО “Институт информационных технологий”. С. 230–234.
  8. Albers S.V., Meyer H.B., 2011. The archaeal cell envelope // Nat. Rev. Microbiol. V. 9. P. 414–426.
  9. Andersen A.C., Haack H., 2005. Carbonaceous chondrites: Tracers of the prebiotic chemical evolution of the solar system // Int. J. Astrobiol. V. 4. P. 12–17.
  10. Babajanian S.G., Wolf Y., Khachatyian A. et al., 2023. Coevolution of reproducers and replicators at the origin of life and the conditions for the origin of genomes // Proc. Natl Acad. Sci. USA. V. 120. № 4. Art. e2301522120.
  11. Bachmann P.A., Luisi P.L., Lang J., 1992. Autocatalytic self-replicating micelles as models for prebiotic structures // Nature. V. 357. P. 57–59.
  12. Baltrus D.A., 2013. Exploring the costs of horizontal gene transfer // Trends Ecol. Evol. V. 28. P. 489–496.
  13. Baum D.A., Peng Z., Dolson E. et al., 2023. The ecology-evolution continuum and the origin of life // J. R. Soc. Interface. V. 20. Art. 20230346.
  14. Berkemer S.J., McGlynn S.E., 2020. A new analysis of archaea – bacteria domain separation: variable phylogenic distance and the tempo of early evolution // Mol. Biol. Evol. V. 37. P. 2332–2340.
  15. Blain J.C., Szostak J.W., 2014. Progress towards synthetic cells // Annu. Rev. Biochem. V. 83. P. 615–640.
  16. Brown J.R., 2003. Ancient horizontal gene transfer // Nat. Rev. Genet. V. 4. P. 121–132.
  17. Caforio A., Siliakus M.F., Exsterkate M., 2018. Converting Escherihia coli into an archaea bacterium with a hybrid heterohiral membrane // Proc. Natl Acad. Sci. USA. V. 115. P. 3704–3709.
  18. Chyba C.F., Thomas P.J., Brookshaw L., Sagan C., 1990. Cometary delivery of organic molecules to the Earth // Science. V. 249. P. 366–373.
  19. Cornish-Bowden A., Cardenas M.L., 2017. Life before LUCA // J. Theor. Biol. V. 434. P. 68–74.
  20. David L.A., Alm E.J., 2011. Rapid evolutionary innovation during an archaean genetic expansion // Nature. V. 469. P. 93–96.
  21. Deamer D., 2008. Origins of life: How leaky were primitive cells // Nature. V. 254. P. 37–38.
  22. Deamer D., 2017. The role of lipid membranes in life’s origin // Life. V. 7. Art. 5.
  23. Di Giulio M., 2011. The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes // J. Mol. Evol. V. 72. P. 119–126.
  24. Di Giulio M., 2021. The late appearance of DNA, the nature of the LUCA and ancestors of the domain of life // BioSystems. V. 202. Art. 104330.
  25. Di Giulio M., 2023. The absence of the evolutionary state of the prokaryote would implay a polyphyletic origin of proteins and that LUCA, the ancestor of bacteria and that archaea were progenotes // BioSystems. V. 233. Art. 105014.
  26. Ehrenfreund P., Cami J., 2010. Cosmic carbon chemistry: From interstellar medium to the early Earth // Cold Spring Harb. Perspect. Biol. V. 2. Art. a002097.
  27. Eme L., Doolittle W.F., 2015. Archaea // Curr. Biol. V. 25. P. R851–R855.
  28. Farias S.T., de, Jose M.V., Prosdocimi F., 2021. Is it possible that cells have had more than one origin? // BioSystems. V. 202. Art. 104371.
  29. Fournier G.P., Andam C.P., Gogarten J.P., 2015. Ancient horizontal gene transfer and the last common ancestors // BMC Evol. Biol. V. 15. Art. 70.
  30. Gibard C., Bhowmik S., Karki M. et al., 2018. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions // Nat. Chem. V. 10. P. 212–217.
  31. Gilbert W., 1986. Origin of life: The RNA world // Nature. V. 319. P. 618.
  32. Glansdorff N., Xu Y., Labedan B., 2008. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner // Biol. Direct. V. 3. Art. 29.
  33. Hall R.J., Whelan F.J., McInerney J.O. et al., 2020. Horizontal gene transfer as source of conflict and cooperation in prokaryotes // Front. Microbiol. V. 11. Art. 1569.
  34. Higgs P.G., 2021. When is a reaction network a metabolism? Criteria for simple metabolisms that support growth and division of protocells // Life. V. 11. Art. 966.
  35. Hordijk W., Steel M., 2018. Autocatalytic networks at the basis of life’s origin and organisation // Life. V. 8. Art. 62.
  36. Jackson J., 2016. Natural pH gradients in hydrothermal alkali vents were unlikely to have a played role in the origin of life // J. Mol. Evol. V. 83. P. 1–11.
  37. Jordan S.F., Rammu H., Zheludev I. et al., 2019. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life // Nat. Ecol. Evol. V. 3. P. 1705–1714.
  38. Joyce G.F., 2002. The antiquity of RNA-based evolution // Nature. V. 418. P. 214–221.
  39. Kahana A., Lancet D., 2021. Self-reproducing catalytic micelles as nanoscopic protocell precursors // Nat. Rev. Chem. V. 5. P. 870–878.
  40. Kazlauskas D., Krupovic M., Gugliemini J. et al., 2020. Diversity and evolution of B-family DNA polymerases // Nucleic Acids Res. V. 48. P. 10142–10156.
  41. Koga Y., 2011. Early evolution of membrane lipids: How did lipid divide occurs // J. Mol. Evol. V. 72. P. 274–282.
  42. Koga Y., Kyuragi T., Nishihara M., Sone N., 1998. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enontiomeric glycerophosphate backbones caused the separation of the two lines of descent // J. Mol. Evol. V. 46. P. 54–63.
  43. Koonin E.V., Krupovic M., Ishino S., Ishino Y., 2020. The replication machinery of LUCA: Common origin of DNA replication and transcription // BMC Biol. V. 18. P. 1–8.
  44. Lancet D., Zidovetzki R., Markovitch O., 2018. Systems protobiology: origin of life in lipid catalytic networks // J. R. Soc. Interrface. V. 15. Art. 20180159.
  45. Lane N., Allen J.F., Martin W., 2010. How did LUCA make a living? Chemiosmosis in the origin of life // Bio- Essays. V. 32. P. 271–280.
  46. Liu L., Zou Y., Bhattacharia A. et al., 2020a. Enzyme-free synthesis of natural phospholipids in water // Nat. Chem. V. 12. P. 1029–1034.
  47. Liu Z., Wu L.-F., Xu J. et al., 2020b. Harnessing chemical energy for the activation and joining of prebiotic building blocks // Nat. Chem. V. 12. P. 1023–1028.
  48. Lombard J., Lopez-Garcia P., Moreira D., 2012. The early evolution of lipid membranes and the three domains of life // Nat. Rev. Microbiol. V. 10. P. 507–515.
  49. Lopez A., Fiore M., 2019. Investigating prebiotic protocells for a comprehensive understanding of the origin of life: A prebiotic systems chemistry perspective // Life. V. 9. Art. 49.
  50. Maden B.E.T., 2000. Tetrahydrofolate and tetrahydromethanopterin compared: Functional distinct carries in C1-metabolism // Biochem. J. V. 350. P. 609–629.
  51. Mancy S.S., Schrum J.P., Krishnamurthy M. et al., 2008. Template directed synthesis of a genetic polimer in a model protocell // Nature. V. 254. P. 122–125.
  52. Martin W., Baross J., Kelley D., Russell M.J., 2008. Hydrothermal vents and the origin of life // Nat. Rev. Microbiol. V. 6. P. 805–813.
  53. Martin W., Russell M.J., 2003. On the origin of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Phyl. Trans. R. Soc. Lond. B. V. 358. P. 59–85.
  54. Martin W.E., Sousa F.L., Lane N., 2014. Energy at life’s origin // Science. V. 344. P. 1092–1093.
  55. Megrian D., Taib N., Jaffe A.L. et al., 2020. Ancient origin and constrained evolution of the division and cell wall gene cluster in bacteria // Nat. Microbiol. V. 7. P. 2114–2127.
  56. Melendez-Hevia E., Montero-Gomez N., Montero F., 2008. From prebiotic chemistry to cellular metabolism. The chemical evolution of metabolism before Darwinian natural selection // J. Theor. Biol. V. 252. P. 505–519.
  57. Milshteyn D., Damer B., Havig J., Deamer D., 2018. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in sea water // Life. V. 8. Art. 11.
  58. Morowitz H.J., Kostelnic J.D., Yang J., Cody G.D., 2000. The origin of intermediary metabolism // Proc. Natl Acad. Sci. USA. V. 97. P. 7704–7708.
  59. Mulkidjanian A.Y., Bychkov A.Y., Dibrova D.V. et al., 2012. Origin of first cell at terrestrial anoxic geothermal fields // Proc. Natl Acad. Sci. USA. V. 109. P. 173–186.
  60. Mulkidjanian A.Y., Galperin M.Y., 2009. On the origin of life in the zinc world. Validation of the hypothesis on the photosynthesizing zinc sulfide edifises of eradles of the life in Earth // Biol. Direct. V. 4. Art. 27.
  61. Mulkidjanian A.Y., Galperin M.Y., Koonin E.V., 2009. Co-evolution of primordial membranes and membrane proteins // Trends Biochem. Sci. V. 34. P. 206–215.
  62. Patel B.H., Percivalle C., Ritson D.J. et al., 2015. Common origin of RNA, protein and lipid precursors in cyanosulfidic protometabolism // Nat. Chem. V. 7. № 4. P. 301–307.
  63. Peng Z., Linderoth J., Baum D.A., 2022. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life // PLoS Comput. Biol. V. 9. Art. e1010498.
  64. Pereto J., Lopez-Garcia P., Moreira D., 2004. Ancestral lipid biosynthesis and early membraine evolution // Trends Biochem. Sci. V. 29. P. 469–477.
  65. Raup D.M., Valentine J.W., 1983. Multiple origins of life // Proc. Natl Acad. Sci. USA. V. 80. P. 2981–2984.
  66. Rushdi A., Simoneit B.R., 2001. Lipid formation by aqueus Fisher-Tropsch-type synthesis over a temperature range of 100 to 400 °C // Orig. Life Evol. Biosph. V. 31. P. 103–118.
  67. Russell M.J., Hall A.J., 1997. The emergence of life from iron monosulfide bubles at submarine hydrothermal redox and pH front // J. Geol. Soc. L. V. 154. P. 377–404.
  68. Russell M.J., Hall A.J., Martin W., 2010. Serpentization as a source of energy at the origin of life // Geobiology. V. 8. P. 355–371.
  69. Serge D., Ben-Eli D., Lancet D., 2000. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies // Proc. Natl Acad. Sci. USA. V. 97. P. 4112–4117.
  70. Serge D., Ben-Eli D., Deamer D.W., Lancet D., 2001. The lipid world // Origin Life Evol. Biosph. V. 31. P. 119–145.
  71. Sojo V., Pomiankowski A., Lane N., 2014. A bioenergetic basis for membrane divergence in archaea and bacteria // PloS Biol. V. 12. Art. e1001926.
  72. Sousa F.L., Martin W.F., 2014. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotiс one carbon compound metabolism // Biochim. Biophys. Acta. V. 1837. P. 964–981.
  73. Sproul G., 2015. Abiogenic synthesies of lipoamino acids and lipopeptides and their prebiotic significance // Orig. Life Evol. Biosph. V. 45. P. 427–437.
  74. Sutherland J.D., 2017. Studies on the origin of life – the end of the beginning // Nat. Rev. Chem. V. 1. Art. 0012.
  75. Szathmary E., 2007. Coevolution of metabolic networks and membranes: the scenario of progressive sequestratin // Phil. Trans. R. Soc. B. V. 362. P. 1781–1787.
  76. Szostak J.W., Batel D.P., Luisi P.L., 2001. Synthesizing life // Nature. V. 409. P. 387–390.
  77. Vestigian K., Woese C., Goldenfeld B., 2006. Collective evolution and genetic code // Proc. Natl Acad. Sci. USA. V. 103. P. 10696–10701.
  78. Wachtershauser G., 2003. From pre-cells to eukarya – a tale of two lipids // Mol. Microbiol. V. 47. P. 13–22.
  79. Weiss M.C., Sousa F.L., Mrnjavac N. et al., 2016. The physiology and habitat of the last universal common ancestor // Nat. Microbiol. V. 1. Art. 16116.
  80. Williams L.B., Canfield B., Voglesonger K.M., Holloway J.R., 2005. Organic molecules formed in primordial womb // Geology. V. 33. P. 913–916.
  81. Wisweswaran G.R.R., Dijkstra B.W., Kok J., 2011. Murein and preusomurein cell wall binding domains of bacteria and archaea – a comparative view // Appl. Microbiol. Biotechnol. V. 92. P. 921–928.
  82. Woese C., 1998. The universal ancestor // Proc. Natl Acad. Sci. USA. V. 95. P. 50–57.
  83. Woese C., 2002. On evolution of cells // Proc. Natl Acad. Sci. USA. V. 99. P. 8742–8747.
  84. Woese C., 2004. A new biology for a new century // Microbiol. Mol. Biol. Rev. V. 68. P. 173–168.
  85. Xavier J.C., Hordijk W., Kauffman S. et al., 2020. Autocatalytic chemical networks at the origin of metabolism // Proc. R. Soc. B. V. 287. P. 2019–2377.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025