Plant pigments: biological, ecological, and evolutionary aspects (an overview)
- Авторлар: Dymova O.V.1, Golovko T.K.1
-
Мекемелер:
- Institute of Biology, Komi Science Centre, Ural Branch of RAS
- Шығарылым: Том 86, № 5 (2025)
- Беттер: 361-380
- Бөлім: Articles
- URL: https://stomuniver.ru/0044-4596/article/view/697046
- DOI: https://doi.org/10.31857/S0044459625050047
- ID: 697046
Дәйексөз келтіру
Аннотация
The organization, diversity and functioning of pigment complexes of phototrophic organisms have for a long time attracted the attention of not only biologists, but also specialists in related fields of science and practice. The review provides contemporary information on the main photosynthetic (chlorophyll, carotenoids) and non-photosynthetic (anthocyanins, betalains) plant pigments. The evolutionary aspects of diversity, structure, functions, biological properties, and localization of pigments in plant tissues and organs are analyzed. Data on the impact of environmental conditions and various stress factors on the composition and content of pigments and their participation in the protection of the photosynthetic apparatus are presented. The possibilities of using the traits of the pigment complex as an indicator of the plant organism state are discussed. The properties of pigments as biologically active compounds and the human need for food rich in carotenoids, anthocyanins, and betalains are noted.
Авторлар туралы
O. Dymova
Institute of Biology, Komi Science Centre, Ural Branch of RAS
Email: dymovao@ib.komisc.ru
Kommunisticheskaya, 28, Syktyvkar, 167000 Russia
T. Golovko
Institute of Biology, Komi Science Centre, Ural Branch of RASKommunisticheskaya, 28, Syktyvkar, 167000 Russia
Әдебиет тізімі
- Андреева Т.Ф., 1969. Фотосинтез и азотный обмен листьев. М.: Наука. 199 с.
- Андрианова Ю.Е., Тарчевский И.А., 2000. Хлорофилл и продуктивность растений. М.: Наука. 135 с.
- Воронин П.Ю., Ефимцев Е.И., Васильев А.А., 1995. Проективное содержание хлорофилла и биоразнообразие растительности основных ботанико-географических зон России // Физиология растений. Т. 42. № 2. С. 295–302.
- Головко Т.К., 2023. Антоцианы растений: структура, регуляция биосинтеза, функции, экология // Физиология растений. Т. 70. № 7. С. 701–714. https://doi.org/10.31857/S0015330323600547
- Головко Т.К., Далькэ И.В., Григорай Е.Е., Буткин А.В., Табаленкова Г.Н., 2017. Овощеводство защищенного грунта на Севере: теоретические и практические аспекты. Сыктывкар: ИБ Коми НЦ УрО РАН. 156 с.
- Горышина Т.К., Заботина Л.Н., Пружина Л.Г., 1975. Пластидный аппарат травянистых растений в разных условиях освещения // Экология. № 5. С. 15–22.
- Дымова О.В., Головко Т.К., 2019. Фотосинтетические пигменты в растениях природной флоры таёжной зоны европейского Северо-Востока России // Физиология растений. Т. 66. № 3. С. 198–206. https://doi.org/10.1134/S1021443719030038
- Дымова О.В., Гриб И., Головко Т.К., Стржалка К., 2010. Состояние пигментного аппарата зимне- и летнезеленых листьев теневыносливого растения Ajuga reptans L. // Физиология растений. Т. 57. № 6. С. 809–818. https://doi.org/10.1134/S1021443710060026
- Дымова О.В., Захожий И.Г., Головко Т.К., 2023. Возрастные и адаптивные изменения фотосинтетического аппарата листьев зимне-зеленого травянистого растения Ajuga reptans L. в природных условиях таёжной зоны // Физиология растений. Т. 70. № 6. С. 577–587. https://doi.org/10.31857/S0015330323600237
- Дымова О.В., Тетерюк Л.В., 2000. Физиологическая и популяционная экология неморальных травянистых растений на Севере. Екатеринбург: УрО РАН. 144 с.
- Иванов Л.А., Иванова Л.А., Ронжина Д.А., Юдина П.К., 2013. Изменение содержания хлорофиллов и каротиноидов в листьях степных растений вдоль широтного градиента на Южном Урале // Физиология растений. Т. 60. № 6. С. 856–864.
- Карабанов И.А., 1981. Флавоноиды в мире растений. Минск: Ураджай. 80 с.
- Красновский А.А., 1994. Синглетный молекулярный кислород. Механизмы образования и пути дезактивации в фотосинтетических системах // Биофизика. Т. 39. № 2. С. 263–250.
- Кузнецов В.В., 2018. Структура и экспрессия хлоропластного генома // Физиология растений. Т. 65. С. 243–255.
- Ладыгин В.Г., 2000. Биосинтез каротиноидов в хлоропластах водорослей и высших растений // Физиология растений. Т. 47. С. 904–923.
- Ладыгин В.Г., 2002. Современные представления о путях биосинтеза каротиноидов в хлоропластах эукариот // Журн. общ. биологии. Т. 63. № 4. С. 299–325.
- Ладыгин В.Г., 2015. Пути биосинтеза, локализация, метаболизм и функции каротиноидов в хлоропластах различных видов водорослей / Вопросы современной альгологии. Пущино: ИФПБ РАН. 87 с.
- Ладыгин В.Г., Ширшикова Г.Н., 2006. Современные представления о функциональной роли каротиноидов в хлоропластах эукариот // Журн. общ. биологии. Т. 67. № 3. С. 163–190.
- Лукьянова Л.М., Локтева Т.Н., Булычева Т.М., 1986. Газообмен и пигментная система растений Кольской Субарктики (Хибинский горный массив) / Под ред. Вознесенского В.Л. Апатиты: Кольский филиал АН СССР. 128 с.
- Марковская Е.Ф., Шмакова Н.Ю., 2017. Растения и лишайники Западного Шпицбергена: экология, физиология. Петрозаводск: Изд-во ПетрГУ. 270 с.
- Маслова Т.Г., Марковская Е.Ф., Слемнев Н.Н., 2020. Функции каротиноидов в листьях высших растений (обзор) // Журн. общ. биологии. Т. 81. № 4. С. 297–310.
- Мокроносов А.Т., 1978. Мезоструктура и функциональная активность фотосинтетического аппарата // Мезоструктура и функциональная активность фотосинтетического аппарата / Под ред. Мокроносова А.Т., Борзенковой Р.А., Цельникер Ю.Л., Некрасовой Г.Ф. Свердловск: Уральский ун-т. С. 5–31.
- Мокроносов А.Т., 1981. Онтогенетический аспект фотосинтеза. М.: Наука. 196 с.
- Мокроносов А.Т., 1983. Фотосинтетическая функция и целостность растительного организма: 42-е Тимирязевское чтение. М.: Наука. 64 с.
- Мокроносов А.Т., Гавриленко В.Ф., Жигалова Т.В., 2006. Фотосинтез. Физиолого-экологические и биохимические аспекты / Отв. ред. Ермаков И.П. М.: Академия. 448 с.
- Носов А.М., 2005. Вторичный метаболизм // Физиология растений. М.: Изд. центр “Академия”. С. 588.
- Попова И.А., Маслова Т.Г., Попова О.Ф., 1989. Особенности пигментного аппарата растений разных ботанико-географических зон // Эколого-физиологические исследования фотосинтеза и дыхания растений / Под ред. Семихатовой О.А. Л.: Наука. С. 115–130.
- Попова О.Ф., Слемнёв Н.Н., Попова И.А., Маслова Т.Г., 1984. Содержание пигментов пластид у растений пустынь Гоби и Каракумы // Бот. журн. Т. 69. С. 65–114.
- Ризниченко Г.Ю., Беляева Н.Е., Коваленко И.Б., Дьяконова А.Н., Абатурова А.М. и др., 2013. Кинетические и многочастичные модели фотосинтетического электронного транспорта // Фотосинтез: открытые вопросы и что мы знаем сегодня / Под ред. Аллахвердиева С.И., Рубина А.Б., Шувалова В.А. М.; Ижевск: Институт компьютерных исследований. С. 433–492.
- Саксонова Е.О., 2005. Лютеин и зеаксантин – основные компоненты антиоксидантной системы защиты глаза // Русс. мед. журн. Т. 2. С. 124.
- Сапожников Д.И., Красовская Т.А., Маевская А.Н., 1957. Изменение соотношения основных каротиноидов пластид зеленых листьев при действии света // Докл. АН СССР. Т. 113. № 2. С. 465–467
- Софронова В.Е., Дымова О.В., Головко Т.К., Чепалов В.А., Петров К.А., 2016. Адаптивные изменения пигментного комплекса хвои Pinus sylvestris при закаливании к низкой температуре // Физиология растений. Т. 63. № 4. С. 461–471. https://doi.org/107868/S001533031604014X
- Софронова В.Е., Чепалов В.А., Дымова O.В., Головко Т.К., 2014. Роль пигментной системы вечнозеленого кустарничка Ephedra monosperma в адаптации к климату центральной Якутии // Физиология растений. Т. 61. № 2. С. 266–274. https://doi.org/10.1134/S1021443714010142
- Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н., 2013. Флавоноиды: биохимия, биофизика, медицина. Пущино: Sуnchrobook. 310 c.
- Тарчевский И.А., Андрианова Ю.Е., 1980. Содержание пигментов как показатель мощности развития фотосинтетического аппарата у пшеницы // Физиология растений. Т. 27. № 2. С. 341–347.
- Тютерева Е.В., Войцеховская О.В., 2011. Реакции лишенного хлорофилла b мутанта ячменя chlorina3613 на пролонгированное снижение освещенности. Динамика содержания хлорофиллов, рост и продуктивность // Физиология растений. Т. 58. № 1. С. 3–11.
- Чупахина Г.Н., Масленников П.В., 2004. Адаптация растений к нефтяному стрессу // Экология. № 5. С. 330–335.
- Шашкина М.Я., Шашкин П.Н., Сергеев А.В., 2010. Роль каротиноидов в профилактике наиболее распространенных заболеваний // Росс. биотерапевт. журн. Т. 9. № 1. С. 77–86.
- Цельникер Ю.Л., Малкина И.С., 1986. Баланс органического вещества в онтогенезе листа у лиственных деревьев // Физиология растений. Т. 33. № 5. С. 40–51.
- Agati G., Guidi L., Landi M., Tattini M., 2021. Anthocyanins in photoprotection: Knowing the actors in play to solve this complex ecophysiological issue // New Phytol. V. 232. P. 2228–2235. https://doi.org/10.1111/nph.17648
- Akula R., Ravishankar G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants // Plant Signal. Behav. V. 6. P. 1720–1731. https://doi.org/10.4161/psb.6.11.17613
- Andersen Ø.M., Jordheim M., 2006. The anthocyanins // Flavonoids Chemistry, Biochemistry and Applications / Eds Andersen Ø.M., Markham K.R. Boca Raton: CRC Press. P. 471–551.
- Apel K., 1981. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protophlorophyllide oxidoreductase // Eur. J. Biochem. V. 120. P. 89–93.
- Archetti M., 2009. Classification of hypotheses for the evolution of autumn colours // Oikos. V. 118. P. 328–333. https://doi.org/10.1111/j.1600-0706.2008.17164.x
- Archibald J.M., Keeling P.J., 2002. Recycled plastids: A ‘Green Movement’ in eukaryotic evolution // Trends Genet. V. 18. № 11. P. 577–584. https://doi.org/10.1016/s0168-9525(02)02777-4
- Azeredo H.M.C., 2009. Betalains: Properties, sources, applications, and stability – A review // Int. J. Food Sci. Technol. V. 44. P. 2365–2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x
- Ballottari M., Girardon J., Dall’Osto L., Bassi R., 2012. Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes // Biochim. Biophys. Acta. V. 1817. P. 143–157. https://doi.org/10.1016/j.bbabio.2011.06.005
- Baroli I., Niyogi K.K., 2000. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants // Phil. Trans. R. Soc. Lond. B. V. 355. P. 1385–1394. https://doi.org/10.1098/rstb.2000.0700
- Becker B., 2013. Snow ball earth and the split of Streptophyta and Chlorophyta // Trends Plant Sci. V. 18. № 4. P. 180–183. https://doi.org/10.1016/j.tplants.2012.09.010
- Bierenbroodspot M.J., Pröschold T., Fürst-Jansen J.M.R., Vries S., de, Irisarri I., et al., 2024. phylogeny and evolution of streptophyte algae // Ann. Bot. V. 134. P. 385–400. https://doi.org/10.1093/aob/mcae091
- Blankenship R.E., 2002. Molecular Mechanisms of Photosynthesis. N.-Y.: John Wiley & Sons. 456 p. https://doi.org/10.1002/9780470758472
- Bojovic B., Markovic A., 2009. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.) // Kragujevac J. Sci. V. 31. P. 69–74.
- Britton G., 1989. Carotenoid biosynthesis – An overview // Carotenoids / Eds Krinsky N.I., Mathews-Roth M.M., Taylor R.F. N.-Y.: Springer US. P. 167–184.
- Britton G., 1995. Structure and properties of carotenoids in relation to function // FASEB J. V. 9. P. 1551–1558.
- Britton G., 1998. Overview of carotenoid biosynthesis // Biosynthesis and Metabolism. V. 3 / Eds Britton G., Liaaen-Jensen S., Pfander H. Basel: Birkhouser Verlag. P. 13–148.
- Brockington S.F., Walker R.H., Glover B.J., Soltis P.S., Soltis D.E., 2011. Complex pigment evolution in the Caryophyllales // New Phytol. V. 190. № 4. Р. 854–864. https://doi.org/10.1111/j.1469-8137.2011.03687.x
- Caldwell M.M., Ballare C.L., Bornman J.F., Flint S.D., Bjorn L.O., et al., 2007. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors // Photochem. Photobiol. Sci. V. 2. P. 29–38. http://dx.doi.org/10.1039/b700019g
- Caldwell M.M., Björn L.O., Bornman J.F., Flint S.D., Kulandaivelu G., et al., 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems // J. Photochem. Photobiol. B. Biol. V. 46. № 1–3. P. 40–52. https://doi.org/10.1016/S1011-1344(98)00184-5
- Chalker-Scott L., 1999. Environmental significance of anthocyanins in plant stress responses // Photochem. Photobiol. V. 70. P. 1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
- Cho Y.B., Boyd R.A., Ren Y., Lee M.-S., Jones S.I., et al., 2024. Reducing chlorophyll levels in seed-filling stages results in higher seed nitrogen without impacting canopy carbon assimilation // Plant Cell Environ. V. 47. P. 278–293. https://doi.org/10.1111/pce.14737
- Cooney L.J., Schaefer H.M., Logan B.A., Cox B., Gould K.S., 2015. Functional significance of anthocyanins in peduncles of Sambucus nigra // Environ. Exp. Bot. V. 119. P. 18–26. http://dx.doi.org/10.1016/j.envexpbot.2015.03.001
- Coultate T., Blackburn R.S., 2018. Food colorants: Their past, present and future // Color Technol. V. 134. P. 165–186. https://doi.org/10.1111/cote.12334
- Cuttriss A., Pogson B., 2004. Carotenoids // Annual Plant Reviews. Boca Raton: CRC Press. P. 57–91.
- Davies K.M., Albert N.W., Zhou Y., Schwinn K.E., 2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants // Annu. Plant Rev. V. 1. № 1. P. 1–41. https://doi.org/10.1002/9781119312994.apr0604
- Davies K.M., Landi M., Klink J.W., van, Schwinn K.E., Brummell D.A., et al., 2022. Evolution and function of red pigmentation in land plants // Ann. Bot. V. 130. P. 613–636. https://doi.org/10.1093/aob/mcac109
- Delgado-Vargas F., Jiménez A.R., Paredes-López O., 2000. Natural pigments: carotenoids, anthocyanins, and betalains − Characteristics, biosynthesis, processing, and stability // Crit. Rev. Food Sci. Nutr. V. 40. № 3. P. 173–289. https://doi.org/10.1080/10408690091189257.
- Demmig B., Björkman O., 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants // Planta. V. 171. № 2. P. 171–184.
- Demoulin C.F., Lara Y.J., Lambion A., Javaux E.J., 2024. Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis // Nature. V. 625. P. 529–534. https://doi.org/10.1038/s41586-023-06896-7
- Donoghue P.C.J., Harrison C.J., Paps M.J., Schneider H., 2021. The evolutionary emergence of land plants // Curr. Biol. V. 31. № 19. P. R1281–R1298. https://doi.org/10.1016/j.cub.2021.07.038
- Drumm-Herrel H., Mohr I., 1985. Photostability of seedlings differing in their potential to synthesize anthocyanin // Physiol. Plantarum. V. 64. P. 60–66. https://doi.org/10.1111/j.1399-3054.1985.tb01213.x
- Edge R., Gaikwad P., Navaratnam S., Rao B.S.M., Truscott T.G., 2010. Reduction of oxidized quanosine by dietary carotenoids: A pulse radiolysis study // Arch. Biochem. Biophys. V. 504. № 1. P. 100–103. https://doi.org/10.1016/j.abb.2010.07.026.
- Edge R., Truscott T.G., 1999. Carotenoid radicals and the interaction of carotenoids with active oxygen species // The Photochemistry of Carotenoids / Eds Frank H.A., Young A.J., Britton G., Cogdell R.J. Dordrech: Kluwer Academic Publishers. P. 223–234.
- Eskling M., Arvidsson P., Åkerlund H., 1997. The xanthophyll cycle, its regulation and components // Physiol. Plant. V. 100. № 4. P. 806–816.
- Evans J.R., 1983. Nitrogen and photosynyhesis in the flag leaf of wheat (Triticum aestivum L.) // Plant Physiol. V. 72. P. 297–302.
- Falcon C., Falcon E., Bortolozzo U., Fauve S., 2009. Capillary wave turbulence on a spherical fluid surface in low gravity // Europhys. Lett. V. 86. Art. 14002. https://doi.org/10.1209/0295-5075/86/14002
- Finet C., Timme R.E., Delwiche C.F., Marlétaz F., 2010. Multigene phylogeny of the Green Lineage reveals the origin and diversification of land plants // Curr. Biol. V. 20. P. 2217–2222. https://doi.org/10.1016/j.cub.2010.11.035
- Flowers T.J., Colmer T.D., 2015. Plant salt tolerance: Adaptations in halophytes // Ann. Bot. V. 115. № 3. P. 327–331. https://doi.org/10.1093/aob/mcu267
- Forreiter C., Cleve B., van, Schmidt A., Apel K., 1991. Evidence for a general light-dependent negative control of NADFH-protochlorophyllide oxidoreductase in angiosperms // Planta. V. 183. P. 126–132.
- Han Q., Shinohara K., Kakubari Y., Mukai Y., 2003. Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica // Plant Cell Environ. V. 26. P. 715–723. http://dx.doi.org/10.1046/j.1365-3040.2003.01008.x
- Handelman G.J., 2001. The evolving role of carotenoids in human biochemistry // Nutrition. V. 17. № 10. P. 818–822. http://dx.doi.org/10.1016/S0899-9007(01)00640-2
- Hendry G.A.F., Houghton J.D., Brown S.B., 1987. The degradation of chlorophyll – A biological enigma // New Phytol. V. 107. № 2. P. 255–479. https://doi.org/10.1111/j.1469-8137.1987.tb00181.x
- Hess S., Williams S.K., Busch A., Irisarri I., Delwiche C.F., et al., 2022. A phylogenomically informed five-order system for the closest relatives of land plants // Curr. Biol. V. 32. № 20. P. 4473–4482.e7. https://doi.org/10.1016/j.cub.2022.08.022
- Heyes D.J., Hunter C.N., 2005. Making light work of enzyme catalysis: Protochlorophyllide oxidoreductase // Trends Biochem. Sci. V. 30. P. 642–649. https://doi.org/10.1016/j.tibs.2005.09.001
- Hoch W.A., Singsaas E.L., McCown B.H., 2003. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels // Plant Physiol. V. 133. P. 1296–1305. https://doi.org/10.1104/pp.103.027631
- Hoch W.A., Zeldin E.L., McCown B.H., 2001. Physiological significance of anthocyanins during autumnal leaf senescence // Tree Physiol. V. 21. P. 1–8. https://doi.org/10.1093/treephys/21.1.1
- Hoe B.C., Priyangaa A., Nagarajan J., Ooi C.W., Ramanan R.N., Prasad K.N., 2017. Chapter 8 – Carotenoids // Nutraceutical and Functional Food Components (2nd ed.). Amsterdam: Elsevier Inc. P. 313–362. https://doi.org/10.1016/B978-0-323-85052-0.00011-8
- Hormaetxe K., Hernandez A., Becerril J.M., Carcia-Plazaola J.J., 2004. Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves // Plant Biol. V. 6. P. 325–332. https://doi.org/10.1093/jxb/eri255
- Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., et al., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances // Plant J. V. 54. P. 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Gandía-Herrero F., Escribano J., García-Carmona F., 2016. Bio- logical activities of plant pigments betalains // Crit. Rev. Food Sci. Nutr. V. 56. P. 937–945. https://doi.org/10.1080/10408398.2012.740103
- Gandía-Herrero F., García-Carmona F., 2013. Biosynthesis of betalains: Yellow and violet plant pigments // Trends Plant Sci. V. 18. P. 334–343. https://doi.org/10.1016/j.tplants.2013.01.003
- George C.O., Hughes N.M., Neufeld H.S., 2022. Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: A nutrient-centered perspective // New Phytol. V. 233. P. 22–29. https://doi.org/10.1111/nph.17735
- Gill M., 2003. Pigments of fungi (Macromycetes) // Nat. Prod. Rep. V. 20. P. 615–639.
- Givnish T.J., 1988. Adaptation to sun and shade: A whole-plant perspective // Aust. J. Plant Physiol. V. 15. P. 63–92.
- Glick R.E., 1988. Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts // Biochim. Bio- phys. Acta. V. 934. P. 151–155.
- Glick R.E., McCauley S.W., Melis A., 1985. Effect of light quality on chloroplast-membrane organization and function in pea // Planta. V. 164. P. 487–494. https://doi.org/10.1007/BF00395964
- Gliszczyńska-Świgło A., Szymusiak H., Malinowska P., 2006. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity // Food Addit. Contam. V. 23. P. 1079–1087. https://doi.org/10.1080/02652030600986032
- Gruszeski W., Szymanska R., Fiedor L., 2014. Carotenoids as photoprotectors // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K., Gruszeski W.I., Prasad M.N.V., Strzalka K. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 161–170.
- Gu C., Wu Y., Guo H., Zhu Y., Xu W., et al., 2021. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2 // Sci. Bull. V. 66. № 9. P. 925–936. https://doi.org/10.1016/j.scib.2020.12.005
- Gu K.-D., Wang C.-K., Hu D.-G., Hao Y.-J., 2019. How do anthocyanins paint our horticultural products? // Sci. Hortic. V. 249. P. 257–262. https://doi.org/10.1016/j.scienta.2019.01.034
- İnanç A.L., 2011. Chlorophyll: Structural properties, health benefits and its occurrence in virgin olive oils // Academic Food J. V. 9. № 2. P. 26–32.
- Jahns P., Holzwarth A.R., 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II // Biochim. Biophys. Acta. V. 1817. № 1. P. 182–193. https://doi.org/10.1016/j.bbabio.2011.04.012
- Jain G., Gould K.S., 2015. Are betalain pigments the functional homologues of anthocyanins in plants? // Environ. Exp. Bot. V. 119. P. 48–53. https://doi.org/10.1016/j.envexpbot.2015.06.002
- Jimenez-Aleman G.H., Castro V., Londaitsbehere A., Gutierrez-Rodríguez M., Garaigorta U., et al., 2021. SARS-CoV-2 fears green: The chlorophyll catabolite pheophorbide a is a potent antiviral // Pharmaceuticals. V. 14. Art. 1048. https://doi.org/10.3390/ph14101048
- Jordheim M., Calcott K., Gould K.S., Davies K.M., Schwinn K.E., Andersen O.M., 2016. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliates // Phytochemistry. V. 128. P. 27–34. http://dx.doi.org/10.1016/j.phytochem.2016.04.007
- Jubert C., Mata J., Bench G., Dashwood R., Pereira C., et al., 2009. effects of chlorophyll and chlorophyllin on low-dose aflatoxin B(1) pharmacokinetics in human volunteers // Cancer Prev. Res. V. 2. № 12. P. 1015–1022. https://doi.org/10.1158/1940-6207.CAPR-09-0099
- Kanner J., Harel S., Granit R., 2001. Betalains. A new class of dietary antioxidants // J. Agric. Food Chem. V. 49. P. 5178–5185.
- Khan M.I., Giridhar P., 2015. Plant betalains: Chemistry and biochemistry // Phytochemistry. V. 117. P. 267–295. https://doi.org/10.1016/j.phytochem.2015.06.008
- Klaui H., 1982. Industrial and commercial uses of carotenoids // Carotenoids Chemistry and Biochemistry / Eds Britton G., Goodwin T.W. Oxford: Pergamon. P. 309–317.
- Koyama Y., 1991. Structures and functions of carotenoids in photosynthetic systems // J. Photochem. Photobiol. B. Biol. V. 9. P. 265–280.
- Kühlbrandt W., Wang D.N., Fujiyoshi Y., 1994. Atomic model of plant light-harvesting complex by electron crystallography // Nature. V. 367. P. 614–621. https://doi.org/10.1038/367614a0
- Kumar I., Sharma R.K., 2018. Production of secondary metabolites in plants under abiotic stress: An overview // Significances Bioeng. Biosci. V. 2. № 4. P. 196–200. https://doi.org/10.31031/SBB.2018.02.000545
- Kumar S., Brooks M.S.-L., 2018. Use of red beet (Beta vulga- ris L.) for antimicrobial applications − A critical review // Food Bioprocess Technol. V. 11. P. 17–42. https://doi.org/10.1007/s11947-017-1942-z
- Landi M., Tattini M., Gould K.S., 2015. Multiple functional roles of anthocyanins in plant-environment interactions // Environ. Exp. Bot. V. 119. P. 4–17. http://dx.doi.org/10.1016/j.envexpbot.2015.05.012
- Lanfer-Marquez U.M., Barros R.M.C., Sinnecker P., 2005. Antioxidant activity of chlorophylls and their derivatives // Food Res. Int. V. 38. № 8–9. P. 885–891. https://doi.org/10.1016/j.foodres.2005.02.012
- Latowski D., Dymova O., Maslova T., Strzalka K., 2014. Xanthophyll cycle and its physiological functions // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K., Gruszeski W.I., Prasad M.N.V., Strzalka K. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 183–206.
- Latowski D., Grzyb J., Strzałka K., 2004. The xanthophyll cycle – molecular mechanism and physiological significance // Acta Physiol. Plant. V. 26. № 2. P. 197–212.
- Latowski D., Kuczyńska P., Strzałka K., 2011. Xanthophyll cycle – A mechanism protecting plants against oxidative stress // Redox Rep. V. 16. № 2. P. 78–90. https://doi.org/10.1179/174329211X13020951739938
- Laurin-Lemay S., Brinkmann H., Philippe H., 2012. Origin of land plants revisited in the light of sequence contamination and missing data // Curr. Biol. V. 22. Р. R593–R594.
- Lebedev N., Timko M.P., 1999. Protochlorophyllide oxidoreductase β-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in lightadapted plants // Proc. Natl. Acad. Sci. USA. V. 96. P. 9954–9959. https://doi.org/10.1073/pnas.96.17.9954
- Lev-Yadun S., Gould K.S., 2007. What do red and yellow autumn leaves signal? // Bot. Rev. V. 73. P. 279–289. https://doi.org/10.1663/0006-8101(2007)73[279:WDRAYA]2.0.CO;2
- Li G., Meng X., Zhu M., Li Z., 2019. Research progress of betalain in response to adverse stresses and evolutionary relationship compared with anthocyanin // Molecules. V. 24. Art. 3078. https://doi.org/10.3390/molecules24173078
- Lichtenthaler H.K., Babani F., 2022. Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4 plants as compared to C3 plants // Photosynthetica. V. 60. № 1. P. 3–9. https://doi.org/10.32615/ps.2021.041
- Lichtenthaler H.K., Babani F., Navrátil M., Buschmann C., 2013. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees // Photosynth. Res. V. 117. P. 355–366. https://doi.org/10.1007/s11120-013-9834-1
- Lichtenthaler H.K., Buschmann C., Döll U., Fietz H.J., Bach T., et al., 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves // Photosynth. Res. V. 2. P. 115–141.
- Lila M.A., 2004a. Plant pigments and human health // Plant Pigments and their Manipulation. Boca Raton: CRC Press. P. 248–274.
- Lila M.A., 2004b. Anthocyanins and human health: An in vitro investigative approach // J. Biomed. Biotechnol. V. 5. Art. 306. https://doi.org/10.1155/S111072430440401X
- Lintig J., von, 2012. Provitamin a metabolism and functions in mammalian biology // Am. J. Clin. Nutr. V. 96. № 5. P. 1234S–1244S. https://doi.org/10.3945/ajcn.112.034629
- Liu Z., Yan H., Wang K., Kuang T., Zhang J., et al., 2004. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution // Nature. V. 428. P. 287–292. https://doi.org/10.1038/nature02373
- Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M., 2021. Anthocyanins: Biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods – A review // Agriculture. V. 11. Art. 212. https://doi.org/10.3390/agriculture11030212
- Maslova T.G., Mamushina N.S., Sherstneva O.A., Bubolo L.S., Zubkova E.K., 2009. Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers // Russ. J. Plant Physiol. V. 56. № 5. P. 607–615. https://doi.org/10.1134/S1021443709050045
- Maslova T.G., Markovskaya E.F., 2012. Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov) // Russ. J. Plant Physiol. V. 59. № 3. P. 434–441. https://doi.org/10.1134/S1021443712030120
- Maslova T.G., Popova I.A., 1993. Adaptive properties of the pigment systems // Photosynthetica. V. 29. P. 195–203.
- Masuda T., Takamiya K., 2004. Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms // Photosynth. Res. V. 81. P. 1–29. https://doi.org/10.1023/B:PRES.0000028392.80354.7c
- Matile P., Hortensteiner S., Thomas H., 1999. Chlorophyll degredation // Annu. Rev. Plant Physiol. Plant Mol. Biol. V. 50. P. 67–95.
- Mazza G.J., 2007. Anthocyanins and heart health // Ann. Ist. Super Sanita. V. 43. P. 369–374.
- Mbarki S., Sytar O., Zivcak M., Abdelly C., Cerda A., Brestic M., 2018. Anthocyanins of coloured wheat genotypes in specific response to salt stress // Molecules. V. 23. Art. 1518. https://doi.org/10.3390/molecules23071518
- Melis A., 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency // Plant Sci. V. 177. P. 272−280. http://dx.doi.org/10.1016/j.plantsci.2009.06.005
- Mereschkowsky C., 1905. Uber natur und ursprung der chromatophoren im pflanzenreiche // Biol. Centralblatt. V. 25. P. 593−604.
- Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R., 2008. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves // J. Exp. Bot. V. 59. P. 3903–3911. https://doi.org/10.1093/jxb/ern230
- Moray C., Hua X., Bromham L., 2015. Salt tolerance is evolutionarily labile in a diverse set of angiosperm families // BMC Evol. Biol. V. 15. Art. 90. https://doi.org/10.1186/s12862-015-0379-0
- Moulin M., Smith A.G., 2005. Regulation of tetrapyrrole biosynthesis in higher plants // Biochem. Soc. Trans. V. 33. № 4. P. 737–742. https://doi.org/10.1042/BST0330737
- Neill S.O., Gould K.S., 2003. Anthocyanins in leaves: Light attenuators or antioxidants? // Funct. Plant Biol. V. 30. P. 865–873. https://doi.org/10.1071/FP03118
- Neill S.O., Gould K.S., Kilmartin P.A., Mitchell K.A., Mark-ham K.R., 2002. Antioxidant activities of red versus green leaves in Elatostema rugosum // Plant Cell Environ. V. 25. P. 539–547. https://doi.org/10.1046/j.1365-3040.2002.00837.x
- Nurtiana W., 2019. Anthocyanin as natural colorant: A review // Food ScienTech J. V. 1. № 1. http://dx.doi.org/10.33512/fsj.v1i1.6180
- Oda-Yamamizo C., Mitsuda N., Sakamoto S., Ogawa D., 2016. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves // Sci. Rep. V. 6. Art. e23609. https://doi.org/10.1038/srep23609
- Ottander C., Campbell D., Öquist G., 1995. Seasonal changes in photosystem ii organisation and pigment composition in Pinus sylvestris // Planta. V. 197. № 1. P. 176–183.
- Panche A.N., Diwan A.D., Chandra S.R., 2016. Flavonoids: An overview // J. Nutr. Sci. V. 5. Art. e47. https://doi.org/10.1017/jns.2016.41
- Pfundel E.E., Dilley R.A., 1993. The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts // Plant Physiol. V. 101. P. 65–71.
- Polivka T., Frank H.A., 2010. Molecular factors controlling photosynthetic light-harvesting by carotenoids // Acc. Chem. Res. V. 43. № 8. P. 1125–1134. https://doi.org/10.1021/ar100030m
- Polturak G., Aharoni A., 2018. ‘‘La Vie en Rose’’: Biosynthesis, sources, and applications of betalain pigments // Mol. Plant. V. 11. P. 7–22. https://doi.org/10.1016/j.molp.2017.10.008
- Porra R.J., 1997. Recent progress in porphyrin and chlorophyll biosynthesis // Photochem. Photobiol. V. 65. № 3. P. 492–516.
- Porra R.J., Scheer H., Krautler B., 2014. Biosynthesis and breakdown of chlorophylls // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K. et al. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 55–85.
- Ratnoglik S.L., Aoki C., Sudarmono P., Komoto M., Deng L., et al., 2014. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus // Microbiol. Immunol. V. 58. P. 188–194. https://doi.org/10.1111/1348-0421.12133
- Reinbothe C., Bakkouri M.E., Buhr F., Muraki N., Nomata J., et al., 2010. Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction // Trends Plant Sci. V. 15. № 11. P. 614–624. https://doi.org/10.1016/j.tplants.2010.07.002
- Remias D., Lütz-Meindl U., Lütz C., 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis // Eur. J. Phycol. V. 40. № 3. P. 259–268. https://doi.org/10.1080/09670260500202148
- Renner S.S., Zohner C.M., 2022. Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyanin-red autumn leaves? // J. Evol. Biol. V. 35. P. 183–188. https://doi.org/10.1111/jeb.13903
- Ruban A., Johnson M.P., Duffy C.D.P., 2012. The photoprotective molecular switch in the photosystem ii antenna // Biochim. Biophys. Acta. V. 1817. P. 167–181. https://doi.org/10.1016/j.bbabio.2011.04.007
- Sadowska-Bartosz I., Bartosz G., 2021. Biological properties and applications of betalains // Molecules. V. 26. Art. 2520.
- Sandmann G., 2021. Diversity and origin of carotenoid biosynthesis: Its history of coevolution towards plant photosynthesis // New Phytol. V. 232. P. 479–493. https://doi.org/10.1111/nph.17655
- Schmidt R., 2004. Deactivation of O2 (1Δg) singlet oxygen by carotenoids: Internal conversion of excited encounter complexes // J. Phys. Chem. A. V. 108. № 26. P. 5509–5513. http://dx.doi.org/10.1021/jp048958u
- Sepúlveda-Jiménez G., Rueda-Benítez P., Porta H., Rocha-Sosa M., 2004. Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst // Physiol. Mol. Plant Pathol. V. 64. P. 125–133. https://doi.org/10.1016/j.pmpp.2004.08.003
- Singh P., Singh A., Choudhary K.K., 2023. Revisiting the role of phenylpropanoids in plant defense against UV-B stress // Plant Stress. V. 7. Art. 100143. https://doi.org/10.1016/j.stress.2023.100143
- Skalicky M., Kubes J., Shokoofeh H., Tahjib-Ul-Arif Md., Vachova P., Hejnak V., 2020. Betacyanins and betaxanthins in cultivated varieties of Beta vulgaris L. compared to weed beets // Molecules. V. 25. № 22. Art. 5395. https://doi.org/10.3390/molecules25225395
- Sokolova D.V., Shvachko N.A., Mikhailova A.S., Popov V.S., Solovyeva A.E., Khlestkina E.K., 2024. Characterization of betalain content and antioxidant activity variation dynamics in table beets (Beta vulgaris L.) with differently colored roots // Agronomy. V. 14. Art. 999. https://doi.org/10.3390/agronomy14050999
- Solovchenko A.E., 2013. Physiology and adaptive significance of secondary carotenogenesis in green microalgae // Russ. J. Plant. Physiol. V. 60. P. 1–13. https://doi.org/10.1134/S1021443713010081
- Solovchenko A.E., Merzlyak M.N., 2008. Screening of visible and UV radiation as a photoprotective mechanism in plants // Russ. J. Plant. Physiol. V. 55. P. 719–737. https://doi.org/10.1134/S1021443708060010
- Stahl W., Sies H., 2002. Carotenoids and protection against solar UV radiation // Skin Pharmacol. Appl. Skin Physiol. V. 15. № 5. P. 291–296. http://dx.doi.org/10.1159/000064532
- Stahl W., Sies H., 2005. Bioactivity and protective effects of natural carotenoids // Biochim. Biophys. Acta. V. 1740. № 2. P. 101–107. http://dx.doi.org/10.1016/j.bbadis.2004.12.006
- Standfuss R., Scheltinga A.C.T., van, Lamborghini M., Kuhlbrandt W., 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution // EMBO J. V. 24. P. 919–928. https://doi.org/10.1038/sj.emboj.7600585
- Stewart K.D., Mattox K.R., 1975. Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a and b // Bot. Rev. V. 41. P. 104–135.
- Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G., 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection // New Phytol. V. 155. P. 349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x
- Stintzing F.C., Carle R., 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition // Trends Food Sci. Technol. V. 15. P. 19–38. http://dx.doi.org/10.1016/j.tifs.2003.07.004
- Stintzing F.C., Carle R., 2008. N-heterocyclic pigments: Betalains // Food Colorants: Chemical and Functional Properties / Ed. Socaciu C. Boca Raton: CRC Press. P. 87–99.
- Suzuki J.Y., Bollivar D.W., Bauer C.E., 1997. Genetic analysis of chlorophyll biosynthesis // Annu. Rev. Genet. V. 31. P. 61–89. https://doi.org/10.1146/annurev.genet.31.1.61
- Tanaka R., Kobayashi K., Masuda T., 2011. Tetrapyrrole metabolism in Arabidopsis thaliana // Arabidopsis Book. V. 2011. № 9. Art. e0145.
- Tanaka Y., Sasaki N., Ohmiya A., 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids // Plant J. V. 54. P. 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
- Tesoriere L., Allegra M., Butera D., Livrea M.A., 2004. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans // Am. J. Clin. Nutr. V. 80. P. 941–945.
- Timme R.E., Bachvaroff T.R., Delwiche C.F., 2012. Broad phylogenomic sampling and the sister lineage of land plants // PLoS One. V. 7. Art. e29696. https://doi.org/10.1371/journal.pone.0029696
- Tossi V.E., Tosar L.J.M., Pitta S., Causin F., 2021. Casting light on the pathway to betalain biosynthesis: A review // Environ. Exp. Bot. V. 186. № 1. Art. 104464. https://doi.org/10.1016/j.envexpbot.2021.104464
- Tsuda T., 2012. Dietary anthocyanin rich plants: Biochemical basis and recent progress in health benefits studies // Mol. Nutr. Food Res. V. 56. P. 159–170. https://doi.org/10.1002/mnfr.201100526
- Turmel M., Ehara M., Otis C., Lemieux C., 2002. Phylogenetic relationship among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences // J. Phycol. V. 38. P. 364–375. https://doi.org/10.1046/j.1529-8817.2002.01163.x
- Wanasundara U.N., Shahidi F., 1998. Antioxidant and prooxidant activity of green tea extracts in marine oils // Food Chem. V. 63. № 3. P. 335–342. https://doi.org/10.1016/S0308-8146(98)00025-9
- White P.J., Bowen H.C., Broadley M.R., El-Serehy H.A., Neugebauer K., et al., 2017. Evolutionary origins of abnormally large shoot sodium accumulation in nonsaline environments within the caryophyllales // New Phytol. V. 214. P. 284–293. http://dx.doi.org/10.1111/nph.14370
- Wijesinghe V.N., Choo W.S., 2022. Antimicrobial betalains // J. Appl. Microbiol. V. 133. № 6. P. 3347–3367. https://doi.org/10.1111/jam.15798
- Willows R., 2004. Chlorophylls // Encyclopedia of Plant and Crop Science / Ed. Goodman R.M. N.-Y.: Marcel Dekker Inc. P. 258–262.
- Winkel B.S.J., 2004. Metabolic channeling in plants // Annu. Rev. Plant Biol. V. 55. P. 85–107. http://dx.doi.org/10.1146/annurev.arplant.55.031903. 141714
- Wodniok S., Brinkmann H., Glöckner G., Heidel A.J., Philippe H., et al., 2011. Origin of land plants: Do conjugating green algae hold the key? // BMC Evol. Biol. V. 11. Art. 104.
- Yabuzaki J., 2017. Carotenoids Database: structures, chemical fingerprints and distribution among organisms // Database. V. 2017. Art. bax004. https://doi.org/10.1093/database/bax004
- Yamamoto H.Y., Nakayama T.O.M., Chichester C.O., 1962. Studies on the light and dark interconversions of leaf xanthophylls // Arch. Biochem. V. 97. P. 168–173.
- Yamazaki S., Nomata J., Fujita Y., 2006. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana // Plant Physiol. V. 142. P. 911–922. https://doi.org/10.1104/pp.106.086090
- Young A.J., Lowe G.M., 2001. Antioxidant and prooxidant properties of carotenoids // Arch. Biochem. Biophys. V. 385. № 1. P. 20–27. https://doi.org/10.1006/abbi.2000.2149
- Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K., 2021. Anthocyanins as functional food components // Vavilov J. Genet. Breed. V. 25. P. 178–189. https://doi.org/10.18699/VJ21.022
- Zhong B., Liu L., Yan Z., Penny D., 2013. Origin of land plants using the multispecies coalescent Model // Trends Plant Sci. V. 18. P. 492–495. https://doi.org/10.1016/j.tplants.2013.04.009
- Zhou H., Schwartzenberg K., von, 2020. Zygnematophyceae: From living algae collections to the establishment of future models // J. Exp. Bot. V. 71. № 11. P. 3296–3304. https://doi.org/10.1093/jxb/eraa091
- Zhou Z.-Yu., Liu J.-K., 2010. Pigments of fungi (macromyce- tes) // Nat. Prod. Rep. V. 27. P. 1531–1570.
Қосымша файлдар
