Plant pigments: biological, ecological, and evolutionary aspects (an overview)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The organization, diversity and functioning of pigment complexes of phototrophic organisms have for a long time attracted the attention of not only biologists, but also specialists in related fields of science and practice. The review provides contemporary information on the main photosynthetic (chlorophyll, carotenoids) and non-photosynthetic (anthocyanins, betalains) plant pigments. The evolutionary aspects of diversity, structure, functions, biological properties, and localization of pigments in plant tissues and organs are analyzed. Data on the impact of environmental conditions and various stress factors on the composition and content of pigments and their participation in the protection of the photosynthetic apparatus are presented. The possibilities of using the traits of the pigment complex as an indicator of the plant organism state are discussed. The properties of pigments as biologically active compounds and the human need for food rich in carotenoids, anthocyanins, and betalains are noted.

Авторлар туралы

O. Dymova

Institute of Biology, Komi Science Centre, Ural Branch of RAS

Email: dymovao@ib.komisc.ru
Kommunisticheskaya, 28, Syktyvkar, 167000 Russia

T. Golovko

Institute of Biology, Komi Science Centre, Ural Branch of RAS

Kommunisticheskaya, 28, Syktyvkar, 167000 Russia

Әдебиет тізімі

  1. Андреева Т.Ф., 1969. Фотосинтез и азотный обмен листьев. М.: Наука. 199 с.
  2. Андрианова Ю.Е., Тарчевский И.А., 2000. Хлорофилл и продуктивность растений. М.: Наука. 135 с.
  3. Воронин П.Ю., Ефимцев Е.И., Васильев А.А., 1995. Проективное содержание хлорофилла и биоразнообразие растительности основных ботанико-географических зон России // Физиология растений. Т. 42. № 2. С. 295–302.
  4. Головко Т.К., 2023. Антоцианы растений: структура, регуляция биосинтеза, функции, экология // Физиология растений. Т. 70. № 7. С. 701–714. https://doi.org/10.31857/S0015330323600547
  5. Головко Т.К., Далькэ И.В., Григорай Е.Е., Буткин А.В., Табаленкова Г.Н., 2017. Овощеводство защищенного грунта на Севере: теоретические и практические аспекты. Сыктывкар: ИБ Коми НЦ УрО РАН. 156 с.
  6. Горышина Т.К., Заботина Л.Н., Пружина Л.Г., 1975. Пластидный аппарат травянистых растений в разных условиях освещения // Экология. № 5. С. 15–22.
  7. Дымова О.В., Головко Т.К., 2019. Фотосинтетические пигменты в растениях природной флоры таёжной зоны европейского Северо-Востока России // Физиология растений. Т. 66. № 3. С. 198–206. https://doi.org/10.1134/S1021443719030038
  8. Дымова О.В., Гриб И., Головко Т.К., Стржалка К., 2010. Состояние пигментного аппарата зимне- и летнезеленых листьев теневыносливого растения Ajuga reptans L. // Физиология растений. Т. 57. № 6. С. 809–818. https://doi.org/10.1134/S1021443710060026
  9. Дымова О.В., Захожий И.Г., Головко Т.К., 2023. Возрастные и адаптивные изменения фотосинтетического аппарата листьев зимне-зеленого травянистого растения Ajuga reptans L. в природных условиях таёжной зоны // Физиология растений. Т. 70. № 6. С. 577–587. https://doi.org/10.31857/S0015330323600237
  10. Дымова О.В., Тетерюк Л.В., 2000. Физиологическая и популяционная экология неморальных травянистых растений на Севере. Екатеринбург: УрО РАН. 144 с.
  11. Иванов Л.А., Иванова Л.А., Ронжина Д.А., Юдина П.К., 2013. Изменение содержания хлорофиллов и каротиноидов в листьях степных растений вдоль широтного градиента на Южном Урале // Физиология растений. Т. 60. № 6. С. 856–864.
  12. Карабанов И.А., 1981. Флавоноиды в мире растений. Минск: Ураджай. 80 с.
  13. Красновский А.А., 1994. Синглетный молекулярный кислород. Механизмы образования и пути дезактивации в фотосинтетических системах // Биофизика. Т. 39. № 2. С. 263–250.
  14. Кузнецов В.В., 2018. Структура и экспрессия хлоропластного генома // Физиология растений. Т. 65. С. 243–255.
  15. Ладыгин В.Г., 2000. Биосинтез каротиноидов в хлоропластах водорослей и высших растений // Физиология растений. Т. 47. С. 904–923.
  16. Ладыгин В.Г., 2002. Современные представления о путях биосинтеза каротиноидов в хлоропластах эукариот // Журн. общ. биологии. Т. 63. № 4. С. 299–325.
  17. Ладыгин В.Г., 2015. Пути биосинтеза, локализация, метаболизм и функции каротиноидов в хлоропластах различных видов водорослей / Вопросы современной альгологии. Пущино: ИФПБ РАН. 87 с.
  18. Ладыгин В.Г., Ширшикова Г.Н., 2006. Современные представления о функциональной роли каротиноидов в хлоропластах эукариот // Журн. общ. биологии. Т. 67. № 3. С. 163–190.
  19. Лукьянова Л.М., Локтева Т.Н., Булычева Т.М., 1986. Газообмен и пигментная система растений Кольской Субарктики (Хибинский горный массив) / Под ред. Вознесенского В.Л. Апатиты: Кольский филиал АН СССР. 128 с.
  20. Марковская Е.Ф., Шмакова Н.Ю., 2017. Растения и лишайники Западного Шпицбергена: экология, физиология. Петрозаводск: Изд-во ПетрГУ. 270 с.
  21. Маслова Т.Г., Марковская Е.Ф., Слемнев Н.Н., 2020. Функции каротиноидов в листьях высших растений (обзор) // Журн. общ. биологии. Т. 81. № 4. С. 297–310.
  22. Мокроносов А.Т., 1978. Мезоструктура и функциональная активность фотосинтетического аппарата // Мезоструктура и функциональная активность фотосинтетического аппарата / Под ред. Мокроносова А.Т., Борзенковой Р.А., Цельникер Ю.Л., Некрасовой Г.Ф. Свердловск: Уральский ун-т. С. 5–31.
  23. Мокроносов А.Т., 1981. Онтогенетический аспект фотосинтеза. М.: Наука. 196 с.
  24. Мокроносов А.Т., 1983. Фотосинтетическая функция и целостность растительного организма: 42-е Тимирязевское чтение. М.: Наука. 64 с.
  25. Мокроносов А.Т., Гавриленко В.Ф., Жигалова Т.В., 2006. Фотосинтез. Физиолого-экологические и биохимические аспекты / Отв. ред. Ермаков И.П. М.: Академия. 448 с.
  26. Носов А.М., 2005. Вторичный метаболизм // Физиология растений. М.: Изд. центр “Академия”. С. 588.
  27. Попова И.А., Маслова Т.Г., Попова О.Ф., 1989. Особенности пигментного аппарата растений разных ботанико-географических зон // Эколого-физиологические исследования фотосинтеза и дыхания растений / Под ред. Семихатовой О.А. Л.: Наука. С. 115–130.
  28. Попова О.Ф., Слемнёв Н.Н., Попова И.А., Маслова Т.Г., 1984. Содержание пигментов пластид у растений пустынь Гоби и Каракумы // Бот. журн. Т. 69. С. 65–114.
  29. Ризниченко Г.Ю., Беляева Н.Е., Коваленко И.Б., Дьяконова А.Н., Абатурова А.М. и др., 2013. Кинетические и многочастичные модели фотосинтетического электронного транспорта // Фотосинтез: открытые вопросы и что мы знаем сегодня / Под ред. Аллахвердиева С.И., Рубина А.Б., Шувалова В.А. М.; Ижевск: Институт компьютерных исследований. С. 433–492.
  30. Саксонова Е.О., 2005. Лютеин и зеаксантин – основные компоненты антиоксидантной системы защиты глаза // Русс. мед. журн. Т. 2. С. 124.
  31. Сапожников Д.И., Красовская Т.А., Маевская А.Н., 1957. Изменение соотношения основных каротиноидов пластид зеленых листьев при действии света // Докл. АН СССР. Т. 113. № 2. С. 465–467
  32. Софронова В.Е., Дымова О.В., Головко Т.К., Чепалов В.А., Петров К.А., 2016. Адаптивные изменения пигментного комплекса хвои Pinus sylvestris при закаливании к низкой температуре // Физиология растений. Т. 63. № 4. С. 461–471. https://doi.org/107868/S001533031604014X
  33. Софронова В.Е., Чепалов В.А., Дымова O.В., Головко Т.К., 2014. Роль пигментной системы вечнозеленого кустарничка Ephedra monosperma в адаптации к климату центральной Якутии // Физиология растений. Т. 61. № 2. С. 266–274. https://doi.org/10.1134/S1021443714010142
  34. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н., 2013. Флавоноиды: биохимия, биофизика, медицина. Пущино: Sуnchrobook. 310 c.
  35. Тарчевский И.А., Андрианова Ю.Е., 1980. Содержание пигментов как показатель мощности развития фотосинтетического аппарата у пшеницы // Физиология растений. Т. 27. № 2. С. 341–347.
  36. Тютерева Е.В., Войцеховская О.В., 2011. Реакции лишенного хлорофилла b мутанта ячменя chlorina3613 на пролонгированное снижение освещенности. Динамика содержания хлорофиллов, рост и продуктивность // Физиология растений. Т. 58. № 1. С. 3–11.
  37. Чупахина Г.Н., Масленников П.В., 2004. Адаптация растений к нефтяному стрессу // Экология. № 5. С. 330–335.
  38. Шашкина М.Я., Шашкин П.Н., Сергеев А.В., 2010. Роль каротиноидов в профилактике наиболее распространенных заболеваний // Росс. биотерапевт. журн. Т. 9. № 1. С. 77–86.
  39. Цельникер Ю.Л., Малкина И.С., 1986. Баланс органического вещества в онтогенезе листа у лиственных деревьев // Физиология растений. Т. 33. № 5. С. 40–51.
  40. Agati G., Guidi L., Landi M., Tattini M., 2021. Anthocyanins in photoprotection: Knowing the actors in play to solve this complex ecophysiological issue // New Phytol. V. 232. P. 2228–2235. https://doi.org/10.1111/nph.17648
  41. Akula R., Ravishankar G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants // Plant Signal. Behav. V. 6. P. 1720–1731. https://doi.org/10.4161/psb.6.11.17613
  42. Andersen Ø.M., Jordheim M., 2006. The anthocyanins // Flavonoids Chemistry, Biochemistry and Applications / Eds Andersen Ø.M., Markham K.R. Boca Raton: CRC Press. P. 471–551.
  43. Apel K., 1981. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protophlorophyllide oxidoreductase // Eur. J. Biochem. V. 120. P. 89–93.
  44. Archetti M., 2009. Classification of hypotheses for the evolution of autumn colours // Oikos. V. 118. P. 328–333. https://doi.org/10.1111/j.1600-0706.2008.17164.x
  45. Archibald J.M., Keeling P.J., 2002. Recycled plastids: A ‘Green Movement’ in eukaryotic evolution // Trends Genet. V. 18. № 11. P. 577–584. https://doi.org/10.1016/s0168-9525(02)02777-4
  46. Azeredo H.M.C., 2009. Betalains: Properties, sources, applications, and stability – A review // Int. J. Food Sci. Technol. V. 44. P. 2365–2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x
  47. Ballottari M., Girardon J., Dall’Osto L., Bassi R., 2012. Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes // Biochim. Biophys. Acta. V. 1817. P. 143–157. https://doi.org/10.1016/j.bbabio.2011.06.005
  48. Baroli I., Niyogi K.K., 2000. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants // Phil. Trans. R. Soc. Lond. B. V. 355. P. 1385–1394. https://doi.org/10.1098/rstb.2000.0700
  49. Becker B., 2013. Snow ball earth and the split of Streptophyta and Chlorophyta // Trends Plant Sci. V. 18. № 4. P. 180–183. https://doi.org/10.1016/j.tplants.2012.09.010
  50. Bierenbroodspot M.J., Pröschold T., Fürst-Jansen J.M.R., Vries S., de, Irisarri I., et al., 2024. phylogeny and evolution of streptophyte algae // Ann. Bot. V. 134. P. 385–400. https://doi.org/10.1093/aob/mcae091
  51. Blankenship R.E., 2002. Molecular Mechanisms of Photosynthesis. N.-Y.: John Wiley & Sons. 456 p. https://doi.org/10.1002/9780470758472
  52. Bojovic B., Markovic A., 2009. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.) // Kragujevac J. Sci. V. 31. P. 69–74.
  53. Britton G., 1989. Carotenoid biosynthesis – An overview // Carotenoids / Eds Krinsky N.I., Mathews-Roth M.M., Taylor R.F. N.-Y.: Springer US. P. 167–184.
  54. Britton G., 1995. Structure and properties of carotenoids in relation to function // FASEB J. V. 9. P. 1551–1558.
  55. Britton G., 1998. Overview of carotenoid biosynthesis // Biosynthesis and Metabolism. V. 3 / Eds Britton G., Liaaen-Jensen S., Pfander H. Basel: Birkhouser Verlag. P. 13–148.
  56. Brockington S.F., Walker R.H., Glover B.J., Soltis P.S., Soltis D.E., 2011. Complex pigment evolution in the Caryophyllales // New Phytol. V. 190. № 4. Р. 854–864. https://doi.org/10.1111/j.1469-8137.2011.03687.x
  57. Caldwell M.M., Ballare C.L., Bornman J.F., Flint S.D., Bjorn L.O., et al., 2007. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors // Photochem. Photobiol. Sci. V. 2. P. 29–38. http://dx.doi.org/10.1039/b700019g
  58. Caldwell M.M., Björn L.O., Bornman J.F., Flint S.D., Kulandaivelu G., et al., 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems // J. Photochem. Photobiol. B. Biol. V. 46. № 1–3. P. 40–52. https://doi.org/10.1016/S1011-1344(98)00184-5
  59. Chalker-Scott L., 1999. Environmental significance of anthocyanins in plant stress responses // Photochem. Photobiol. V. 70. P. 1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
  60. Cho Y.B., Boyd R.A., Ren Y., Lee M.-S., Jones S.I., et al., 2024. Reducing chlorophyll levels in seed-filling stages results in higher seed nitrogen without impacting canopy carbon assimilation // Plant Cell Environ. V. 47. P. 278–293. https://doi.org/10.1111/pce.14737
  61. Cooney L.J., Schaefer H.M., Logan B.A., Cox B., Gould K.S., 2015. Functional significance of anthocyanins in peduncles of Sambucus nigra // Environ. Exp. Bot. V. 119. P. 18–26. http://dx.doi.org/10.1016/j.envexpbot.2015.03.001
  62. Coultate T., Blackburn R.S., 2018. Food colorants: Their past, present and future // Color Technol. V. 134. P. 165–186. https://doi.org/10.1111/cote.12334
  63. Cuttriss A., Pogson B., 2004. Carotenoids // Annual Plant Reviews. Boca Raton: CRC Press. P. 57–91.
  64. Davies K.M., Albert N.W., Zhou Y., Schwinn K.E., 2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants // Annu. Plant Rev. V. 1. № 1. P. 1–41. https://doi.org/10.1002/9781119312994.apr0604
  65. Davies K.M., Landi M., Klink J.W., van, Schwinn K.E., Brummell D.A., et al., 2022. Evolution and function of red pigmentation in land plants // Ann. Bot. V. 130. P. 613–636. https://doi.org/10.1093/aob/mcac109
  66. Delgado-Vargas F., Jiménez A.R., Paredes-López O., 2000. Natural pigments: carotenoids, anthocyanins, and betalains − Characteristics, biosynthesis, processing, and stability // Crit. Rev. Food Sci. Nutr. V. 40. № 3. P. 173–289. https://doi.org/10.1080/10408690091189257.
  67. Demmig B., Björkman O., 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants // Planta. V. 171. № 2. P. 171–184.
  68. Demoulin C.F., Lara Y.J., Lambion A., Javaux E.J., 2024. Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis // Nature. V. 625. P. 529–534. https://doi.org/10.1038/s41586-023-06896-7
  69. Donoghue P.C.J., Harrison C.J., Paps M.J., Schneider H., 2021. The evolutionary emergence of land plants // Curr. Biol. V. 31. № 19. P. R1281–R1298. https://doi.org/10.1016/j.cub.2021.07.038
  70. Drumm-Herrel H., Mohr I., 1985. Photostability of seedlings differing in their potential to synthesize anthocyanin // Physiol. Plantarum. V. 64. P. 60–66. https://doi.org/10.1111/j.1399-3054.1985.tb01213.x
  71. Edge R., Gaikwad P., Navaratnam S., Rao B.S.M., Truscott T.G., 2010. Reduction of oxidized quanosine by dietary carotenoids: A pulse radiolysis study // Arch. Biochem. Biophys. V. 504. № 1. P. 100–103. https://doi.org/10.1016/j.abb.2010.07.026.
  72. Edge R., Truscott T.G., 1999. Carotenoid radicals and the interaction of carotenoids with active oxygen species // The Photochemistry of Carotenoids / Eds Frank H.A., Young A.J., Britton G., Cogdell R.J. Dordrech: Kluwer Academic Publishers. P. 223–234.
  73. Eskling M., Arvidsson P., Åkerlund H., 1997. The xanthophyll cycle, its regulation and components // Physiol. Plant. V. 100. № 4. P. 806–816.
  74. Evans J.R., 1983. Nitrogen and photosynyhesis in the flag leaf of wheat (Triticum aestivum L.) // Plant Physiol. V. 72. P. 297–302.
  75. Falcon C., Falcon E., Bortolozzo U., Fauve S., 2009. Capillary wave turbulence on a spherical fluid surface in low gravity // Europhys. Lett. V. 86. Art. 14002. https://doi.org/10.1209/0295-5075/86/14002
  76. Finet C., Timme R.E., Delwiche C.F., Marlétaz F., 2010. Multigene phylogeny of the Green Lineage reveals the origin and diversification of land plants // Curr. Biol. V. 20. P. 2217–2222. https://doi.org/10.1016/j.cub.2010.11.035
  77. Flowers T.J., Colmer T.D., 2015. Plant salt tolerance: Adaptations in halophytes // Ann. Bot. V. 115. № 3. P. 327–331. https://doi.org/10.1093/aob/mcu267
  78. Forreiter C., Cleve B., van, Schmidt A., Apel K., 1991. Evidence for a general light-dependent negative control of NADFH-protochlorophyllide oxidoreductase in angiosperms // Planta. V. 183. P. 126–132.
  79. Han Q., Shinohara K., Kakubari Y., Mukai Y., 2003. Photoprotective role of rhodoxanthin during cold acclimation in Cryptomeria japonica // Plant Cell Environ. V. 26. P. 715–723. http://dx.doi.org/10.1046/j.1365-3040.2003.01008.x
  80. Handelman G.J., 2001. The evolving role of carotenoids in human biochemistry // Nutrition. V. 17. № 10. P. 818–822. http://dx.doi.org/10.1016/S0899-9007(01)00640-2
  81. Hendry G.A.F., Houghton J.D., Brown S.B., 1987. The degradation of chlorophyll – A biological enigma // New Phytol. V. 107. № 2. P. 255–479. https://doi.org/10.1111/j.1469-8137.1987.tb00181.x
  82. Hess S., Williams S.K., Busch A., Irisarri I., Delwiche C.F., et al., 2022. A phylogenomically informed five-order system for the closest relatives of land plants // Curr. Biol. V. 32. № 20. P. 4473–4482.e7. https://doi.org/10.1016/j.cub.2022.08.022
  83. Heyes D.J., Hunter C.N., 2005. Making light work of enzyme catalysis: Protochlorophyllide oxidoreductase // Trends Biochem. Sci. V. 30. P. 642–649. https://doi.org/10.1016/j.tibs.2005.09.001
  84. Hoch W.A., Singsaas E.L., McCown B.H., 2003. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels // Plant Physiol. V. 133. P. 1296–1305. https://doi.org/10.1104/pp.103.027631
  85. Hoch W.A., Zeldin E.L., McCown B.H., 2001. Physiological significance of anthocyanins during autumnal leaf senescence // Tree Physiol. V. 21. P. 1–8. https://doi.org/10.1093/treephys/21.1.1
  86. Hoe B.C., Priyangaa A., Nagarajan J., Ooi C.W., Ramanan R.N., Prasad K.N., 2017. Chapter 8 – Carotenoids // Nutraceutical and Functional Food Components (2nd ed.). Amsterdam: Elsevier Inc. P. 313–362. https://doi.org/10.1016/B978-0-323-85052-0.00011-8
  87. Hormaetxe K., Hernandez A., Becerril J.M., Carcia-Plazaola J.J., 2004. Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves // Plant Biol. V. 6. P. 325–332. https://doi.org/10.1093/jxb/eri255
  88. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., et al., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances // Plant J. V. 54. P. 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  89. Gandía-Herrero F., Escribano J., García-Carmona F., 2016. Bio- logical activities of plant pigments betalains // Crit. Rev. Food Sci. Nutr. V. 56. P. 937–945. https://doi.org/10.1080/10408398.2012.740103
  90. Gandía-Herrero F., García-Carmona F., 2013. Biosynthesis of betalains: Yellow and violet plant pigments // Trends Plant Sci. V. 18. P. 334–343. https://doi.org/10.1016/j.tplants.2013.01.003
  91. George C.O., Hughes N.M., Neufeld H.S., 2022. Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: A nutrient-centered perspective // New Phytol. V. 233. P. 22–29. https://doi.org/10.1111/nph.17735
  92. Gill M., 2003. Pigments of fungi (Macromycetes) // Nat. Prod. Rep. V. 20. P. 615–639.
  93. Givnish T.J., 1988. Adaptation to sun and shade: A whole-plant perspective // Aust. J. Plant Physiol. V. 15. P. 63–92.
  94. Glick R.E., 1988. Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts // Biochim. Bio- phys. Acta. V. 934. P. 151–155.
  95. Glick R.E., McCauley S.W., Melis A., 1985. Effect of light quality on chloroplast-membrane organization and function in pea // Planta. V. 164. P. 487–494. https://doi.org/10.1007/BF00395964
  96. Gliszczyńska-Świgło A., Szymusiak H., Malinowska P., 2006. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity // Food Addit. Contam. V. 23. P. 1079–1087. https://doi.org/10.1080/02652030600986032
  97. Gruszeski W., Szymanska R., Fiedor L., 2014. Carotenoids as photoprotectors // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K., Gruszeski W.I., Prasad M.N.V., Strzalka K. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 161–170.
  98. Gu C., Wu Y., Guo H., Zhu Y., Xu W., et al., 2021. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2 // Sci. Bull. V. 66. № 9. P. 925–936. https://doi.org/10.1016/j.scib.2020.12.005
  99. Gu K.-D., Wang C.-K., Hu D.-G., Hao Y.-J., 2019. How do anthocyanins paint our horticultural products? // Sci. Hortic. V. 249. P. 257–262. https://doi.org/10.1016/j.scienta.2019.01.034
  100. İnanç A.L., 2011. Chlorophyll: Structural properties, health benefits and its occurrence in virgin olive oils // Academic Food J. V. 9. № 2. P. 26–32.
  101. Jahns P., Holzwarth A.R., 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II // Biochim. Biophys. Acta. V. 1817. № 1. P. 182–193. https://doi.org/10.1016/j.bbabio.2011.04.012
  102. Jain G., Gould K.S., 2015. Are betalain pigments the functional homologues of anthocyanins in plants? // Environ. Exp. Bot. V. 119. P. 48–53. https://doi.org/10.1016/j.envexpbot.2015.06.002
  103. Jimenez-Aleman G.H., Castro V., Londaitsbehere A., Gutierrez-Rodríguez M., Garaigorta U., et al., 2021. SARS-CoV-2 fears green: The chlorophyll catabolite pheophorbide a is a potent antiviral // Pharmaceuticals. V. 14. Art. 1048. https://doi.org/10.3390/ph14101048
  104. Jordheim M., Calcott K., Gould K.S., Davies K.M., Schwinn K.E., Andersen O.M., 2016. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliates // Phytochemistry. V. 128. P. 27–34. http://dx.doi.org/10.1016/j.phytochem.2016.04.007
  105. Jubert C., Mata J., Bench G., Dashwood R., Pereira C., et al., 2009. effects of chlorophyll and chlorophyllin on low-dose aflatoxin B(1) pharmacokinetics in human volunteers // Cancer Prev. Res. V. 2. № 12. P. 1015–1022. https://doi.org/10.1158/1940-6207.CAPR-09-0099
  106. Kanner J., Harel S., Granit R., 2001. Betalains. A new class of dietary antioxidants // J. Agric. Food Chem. V. 49. P. 5178–5185.
  107. Khan M.I., Giridhar P., 2015. Plant betalains: Chemistry and biochemistry // Phytochemistry. V. 117. P. 267–295. https://doi.org/10.1016/j.phytochem.2015.06.008
  108. Klaui H., 1982. Industrial and commercial uses of carotenoids // Carotenoids Chemistry and Biochemistry / Eds Britton G., Goodwin T.W. Oxford: Pergamon. P. 309–317.
  109. Koyama Y., 1991. Structures and functions of carotenoids in photosynthetic systems // J. Photochem. Photobiol. B. Biol. V. 9. P. 265–280.
  110. Kühlbrandt W., Wang D.N., Fujiyoshi Y., 1994. Atomic model of plant light-harvesting complex by electron crystallography // Nature. V. 367. P. 614–621. https://doi.org/10.1038/367614a0
  111. Kumar I., Sharma R.K., 2018. Production of secondary metabolites in plants under abiotic stress: An overview // Significances Bioeng. Biosci. V. 2. № 4. P. 196–200. https://doi.org/10.31031/SBB.2018.02.000545
  112. Kumar S., Brooks M.S.-L., 2018. Use of red beet (Beta vulga- ris L.) for antimicrobial applications − A critical review // Food Bioprocess Technol. V. 11. P. 17–42. https://doi.org/10.1007/s11947-017-1942-z
  113. Landi M., Tattini M., Gould K.S., 2015. Multiple functional roles of anthocyanins in plant-environment interactions // Environ. Exp. Bot. V. 119. P. 4–17. http://dx.doi.org/10.1016/j.envexpbot.2015.05.012
  114. Lanfer-Marquez U.M., Barros R.M.C., Sinnecker P., 2005. Antioxidant activity of chlorophylls and their derivatives // Food Res. Int. V. 38. № 8–9. P. 885–891. https://doi.org/10.1016/j.foodres.2005.02.012
  115. Latowski D., Dymova O., Maslova T., Strzalka K., 2014. Xanthophyll cycle and its physiological functions // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K., Gruszeski W.I., Prasad M.N.V., Strzalka K. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 183–206.
  116. Latowski D., Grzyb J., Strzałka K., 2004. The xanthophyll cycle – molecular mechanism and physiological significance // Acta Physiol. Plant. V. 26. № 2. P. 197–212.
  117. Latowski D., Kuczyńska P., Strzałka K., 2011. Xanthophyll cycle – A mechanism protecting plants against oxidative stress // Redox Rep. V. 16. № 2. P. 78–90. https://doi.org/10.1179/174329211X13020951739938
  118. Laurin-Lemay S., Brinkmann H., Philippe H., 2012. Origin of land plants revisited in the light of sequence contamination and missing data // Curr. Biol. V. 22. Р. R593–R594.
  119. Lebedev N., Timko M.P., 1999. Protochlorophyllide oxidoreductase β-catalyzed protochlorophyllide photoreduction in vitro: Insight into the mechanism of chlorophyll formation in lightadapted plants // Proc. Natl. Acad. Sci. USA. V. 96. P. 9954–9959. https://doi.org/10.1073/pnas.96.17.9954
  120. Lev-Yadun S., Gould K.S., 2007. What do red and yellow autumn leaves signal? // Bot. Rev. V. 73. P. 279–289. https://doi.org/10.1663/0006-8101(2007)73[279:WDRAYA]2.0.CO;2
  121. Li G., Meng X., Zhu M., Li Z., 2019. Research progress of betalain in response to adverse stresses and evolutionary relationship compared with anthocyanin // Molecules. V. 24. Art. 3078. https://doi.org/10.3390/molecules24173078
  122. Lichtenthaler H.K., Babani F., 2022. Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4 plants as compared to C3 plants // Photosynthetica. V. 60. № 1. P. 3–9. https://doi.org/10.32615/ps.2021.041
  123. Lichtenthaler H.K., Babani F., Navrátil M., Buschmann C., 2013. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees // Photosynth. Res. V. 117. P. 355–366. https://doi.org/10.1007/s11120-013-9834-1
  124. Lichtenthaler H.K., Buschmann C., Döll U., Fietz H.J., Bach T., et al., 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves // Photosynth. Res. V. 2. P. 115–141.
  125. Lila M.A., 2004a. Plant pigments and human health // Plant Pigments and their Manipulation. Boca Raton: CRC Press. P. 248–274.
  126. Lila M.A., 2004b. Anthocyanins and human health: An in vitro investigative approach // J. Biomed. Biotechnol. V. 5. Art. 306. https://doi.org/10.1155/S111072430440401X
  127. Lintig J., von, 2012. Provitamin a metabolism and functions in mammalian biology // Am. J. Clin. Nutr. V. 96. № 5. P. 1234S–1244S. https://doi.org/10.3945/ajcn.112.034629
  128. Liu Z., Yan H., Wang K., Kuang T., Zhang J., et al., 2004. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution // Nature. V. 428. P. 287–292. https://doi.org/10.1038/nature02373
  129. Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M., 2021. Anthocyanins: Biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods – A review // Agriculture. V. 11. Art. 212. https://doi.org/10.3390/agriculture11030212
  130. Maslova T.G., Mamushina N.S., Sherstneva O.A., Bubolo L.S., Zubkova E.K., 2009. Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers // Russ. J. Plant Physiol. V. 56. № 5. P. 607–615. https://doi.org/10.1134/S1021443709050045
  131. Maslova T.G., Markovskaya E.F., 2012. Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov) // Russ. J. Plant Physiol. V. 59. № 3. P. 434–441. https://doi.org/10.1134/S1021443712030120
  132. Maslova T.G., Popova I.A., 1993. Adaptive properties of the pigment systems // Photosynthetica. V. 29. P. 195–203.
  133. Masuda T., Takamiya K., 2004. Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms // Photosynth. Res. V. 81. P. 1–29. https://doi.org/10.1023/B:PRES.0000028392.80354.7c
  134. Matile P., Hortensteiner S., Thomas H., 1999. Chlorophyll degredation // Annu. Rev. Plant Physiol. Plant Mol. Biol. V. 50. P. 67–95.
  135. Mazza G.J., 2007. Anthocyanins and heart health // Ann. Ist. Super Sanita. V. 43. P. 369–374.
  136. Mbarki S., Sytar O., Zivcak M., Abdelly C., Cerda A., Brestic M., 2018. Anthocyanins of coloured wheat genotypes in specific response to salt stress // Molecules. V. 23. Art. 1518. https://doi.org/10.3390/molecules23071518
  137. Melis A., 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency // Plant Sci. V. 177. P. 272−280. http://dx.doi.org/10.1016/j.plantsci.2009.06.005
  138. Mereschkowsky C., 1905. Uber natur und ursprung der chromatophoren im pflanzenreiche // Biol. Centralblatt. V. 25. P. 593−604.
  139. Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R., 2008. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves // J. Exp. Bot. V. 59. P. 3903–3911. https://doi.org/10.1093/jxb/ern230
  140. Moray C., Hua X., Bromham L., 2015. Salt tolerance is evolutionarily labile in a diverse set of angiosperm families // BMC Evol. Biol. V. 15. Art. 90. https://doi.org/10.1186/s12862-015-0379-0
  141. Moulin M., Smith A.G., 2005. Regulation of tetrapyrrole biosynthesis in higher plants // Biochem. Soc. Trans. V. 33. № 4. P. 737–742. https://doi.org/10.1042/BST0330737
  142. Neill S.O., Gould K.S., 2003. Anthocyanins in leaves: Light attenuators or antioxidants? // Funct. Plant Biol. V. 30. P. 865–873. https://doi.org/10.1071/FP03118
  143. Neill S.O., Gould K.S., Kilmartin P.A., Mitchell K.A., Mark-ham K.R., 2002. Antioxidant activities of red versus green leaves in Elatostema rugosum // Plant Cell Environ. V. 25. P. 539–547. https://doi.org/10.1046/j.1365-3040.2002.00837.x
  144. Nurtiana W., 2019. Anthocyanin as natural colorant: A review // Food ScienTech J. V. 1. № 1. http://dx.doi.org/10.33512/fsj.v1i1.6180
  145. Oda-Yamamizo C., Mitsuda N., Sakamoto S., Ogawa D., 2016. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves // Sci. Rep. V. 6. Art. e23609. https://doi.org/10.1038/srep23609
  146. Ottander C., Campbell D., Öquist G., 1995. Seasonal changes in photosystem ii organisation and pigment composition in Pinus sylvestris // Planta. V. 197. № 1. P. 176–183.
  147. Panche A.N., Diwan A.D., Chandra S.R., 2016. Flavonoids: An overview // J. Nutr. Sci. V. 5. Art. e47. https://doi.org/10.1017/jns.2016.41
  148. Pfundel E.E., Dilley R.A., 1993. The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts // Plant Physiol. V. 101. P. 65–71.
  149. Polivka T., Frank H.A., 2010. Molecular factors controlling photosynthetic light-harvesting by carotenoids // Acc. Chem. Res. V. 43. № 8. P. 1125–1134. https://doi.org/10.1021/ar100030m
  150. Polturak G., Aharoni A., 2018. ‘‘La Vie en Rose’’: Biosynthesis, sources, and applications of betalain pigments // Mol. Plant. V. 11. P. 7–22. https://doi.org/10.1016/j.molp.2017.10.008
  151. Porra R.J., 1997. Recent progress in porphyrin and chlorophyll biosynthesis // Photochem. Photobiol. V. 65. № 3. P. 492–516.
  152. Porra R.J., Scheer H., Krautler B., 2014. Biosynthesis and breakdown of chlorophylls // Photosynthetic Pigments – Chemical Structure, Biological Function and Ecology / Eds Golovko T.K. et al. Syktyvkar: Komi Scientific Centre of the Ural Branch of the RAS. P. 55–85.
  153. Ratnoglik S.L., Aoki C., Sudarmono P., Komoto M., Deng L., et al., 2014. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus // Microbiol. Immunol. V. 58. P. 188–194. https://doi.org/10.1111/1348-0421.12133
  154. Reinbothe C., Bakkouri M.E., Buhr F., Muraki N., Nomata J., et al., 2010. Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction // Trends Plant Sci. V. 15. № 11. P. 614–624. https://doi.org/10.1016/j.tplants.2010.07.002
  155. Remias D., Lütz-Meindl U., Lütz C., 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis // Eur. J. Phycol. V. 40. № 3. P. 259–268. https://doi.org/10.1080/09670260500202148
  156. Renner S.S., Zohner C.M., 2022. Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyanin-red autumn leaves? // J. Evol. Biol. V. 35. P. 183–188. https://doi.org/10.1111/jeb.13903
  157. Ruban A., Johnson M.P., Duffy C.D.P., 2012. The photoprotective molecular switch in the photosystem ii antenna // Biochim. Biophys. Acta. V. 1817. P. 167–181. https://doi.org/10.1016/j.bbabio.2011.04.007
  158. Sadowska-Bartosz I., Bartosz G., 2021. Biological properties and applications of betalains // Molecules. V. 26. Art. 2520.
  159. Sandmann G., 2021. Diversity and origin of carotenoid biosynthesis: Its history of coevolution towards plant photosynthesis // New Phytol. V. 232. P. 479–493. https://doi.org/10.1111/nph.17655
  160. Schmidt R., 2004. Deactivation of O2 (1Δg) singlet oxygen by carotenoids: Internal conversion of excited encounter complexes // J. Phys. Chem. A. V. 108. № 26. P. 5509–5513. http://dx.doi.org/10.1021/jp048958u
  161. Sepúlveda-Jiménez G., Rueda-Benítez P., Porta H., Rocha-Sosa M., 2004. Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst // Physiol. Mol. Plant Pathol. V. 64. P. 125–133. https://doi.org/10.1016/j.pmpp.2004.08.003
  162. Singh P., Singh A., Choudhary K.K., 2023. Revisiting the role of phenylpropanoids in plant defense against UV-B stress // Plant Stress. V. 7. Art. 100143. https://doi.org/10.1016/j.stress.2023.100143
  163. Skalicky M., Kubes J., Shokoofeh H., Tahjib-Ul-Arif Md., Vachova P., Hejnak V., 2020. Betacyanins and betaxanthins in cultivated varieties of Beta vulgaris L. compared to weed beets // Molecules. V. 25. № 22. Art. 5395. https://doi.org/10.3390/molecules25225395
  164. Sokolova D.V., Shvachko N.A., Mikhailova A.S., Popov V.S., Solovyeva A.E., Khlestkina E.K., 2024. Characterization of betalain content and antioxidant activity variation dynamics in table beets (Beta vulgaris L.) with differently colored roots // Agronomy. V. 14. Art. 999. https://doi.org/10.3390/agronomy14050999
  165. Solovchenko A.E., 2013. Physiology and adaptive significance of secondary carotenogenesis in green microalgae // Russ. J. Plant. Physiol. V. 60. P. 1–13. https://doi.org/10.1134/S1021443713010081
  166. Solovchenko A.E., Merzlyak M.N., 2008. Screening of visible and UV radiation as a photoprotective mechanism in plants // Russ. J. Plant. Physiol. V. 55. P. 719–737. https://doi.org/10.1134/S1021443708060010
  167. Stahl W., Sies H., 2002. Carotenoids and protection against solar UV radiation // Skin Pharmacol. Appl. Skin Physiol. V. 15. № 5. P. 291–296. http://dx.doi.org/10.1159/000064532
  168. Stahl W., Sies H., 2005. Bioactivity and protective effects of natural carotenoids // Biochim. Biophys. Acta. V. 1740. № 2. P. 101–107. http://dx.doi.org/10.1016/j.bbadis.2004.12.006
  169. Standfuss R., Scheltinga A.C.T., van, Lamborghini M., Kuhlbrandt W., 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution // EMBO J. V. 24. P. 919–928. https://doi.org/10.1038/sj.emboj.7600585
  170. Stewart K.D., Mattox K.R., 1975. Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a and b // Bot. Rev. V. 41. P. 104–135.
  171. Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G., 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection // New Phytol. V. 155. P. 349–361. https://doi.org/10.1046/j.1469-8137.2002.00482.x
  172. Stintzing F.C., Carle R., 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition // Trends Food Sci. Technol. V. 15. P. 19–38. http://dx.doi.org/10.1016/j.tifs.2003.07.004
  173. Stintzing F.C., Carle R., 2008. N-heterocyclic pigments: Betalains // Food Colorants: Chemical and Functional Properties / Ed. Socaciu C. Boca Raton: CRC Press. P. 87–99.
  174. Suzuki J.Y., Bollivar D.W., Bauer C.E., 1997. Genetic analysis of chlorophyll biosynthesis // Annu. Rev. Genet. V. 31. P. 61–89. https://doi.org/10.1146/annurev.genet.31.1.61
  175. Tanaka R., Kobayashi K., Masuda T., 2011. Tetrapyrrole metabolism in Arabidopsis thaliana // Arabidopsis Book. V. 2011. № 9. Art. e0145.
  176. Tanaka Y., Sasaki N., Ohmiya A., 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids // Plant J. V. 54. P. 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
  177. Tesoriere L., Allegra M., Butera D., Livrea M.A., 2004. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans // Am. J. Clin. Nutr. V. 80. P. 941–945.
  178. Timme R.E., Bachvaroff T.R., Delwiche C.F., 2012. Broad phylogenomic sampling and the sister lineage of land plants // PLoS One. V. 7. Art. e29696. https://doi.org/10.1371/journal.pone.0029696
  179. Tossi V.E., Tosar L.J.M., Pitta S., Causin F., 2021. Casting light on the pathway to betalain biosynthesis: A review // Environ. Exp. Bot. V. 186. № 1. Art. 104464. https://doi.org/10.1016/j.envexpbot.2021.104464
  180. Tsuda T., 2012. Dietary anthocyanin rich plants: Biochemical basis and recent progress in health benefits studies // Mol. Nutr. Food Res. V. 56. P. 159–170. https://doi.org/10.1002/mnfr.201100526
  181. Turmel M., Ehara M., Otis C., Lemieux C., 2002. Phylogenetic relationship among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences // J. Phycol. V. 38. P. 364–375. https://doi.org/10.1046/j.1529-8817.2002.01163.x
  182. Wanasundara U.N., Shahidi F., 1998. Antioxidant and prooxidant activity of green tea extracts in marine oils // Food Chem. V. 63. № 3. P. 335–342. https://doi.org/10.1016/S0308-8146(98)00025-9
  183. White P.J., Bowen H.C., Broadley M.R., El-Serehy H.A., Neugebauer K., et al., 2017. Evolutionary origins of abnormally large shoot sodium accumulation in nonsaline environments within the caryophyllales // New Phytol. V. 214. P. 284–293. http://dx.doi.org/10.1111/nph.14370
  184. Wijesinghe V.N., Choo W.S., 2022. Antimicrobial betalains // J. Appl. Microbiol. V. 133. № 6. P. 3347–3367. https://doi.org/10.1111/jam.15798
  185. Willows R., 2004. Chlorophylls // Encyclopedia of Plant and Crop Science / Ed. Goodman R.M. N.-Y.: Marcel Dekker Inc. P. 258–262.
  186. Winkel B.S.J., 2004. Metabolic channeling in plants // Annu. Rev. Plant Biol. V. 55. P. 85–107. http://dx.doi.org/10.1146/annurev.arplant.55.031903. 141714
  187. Wodniok S., Brinkmann H., Glöckner G., Heidel A.J., Philippe H., et al., 2011. Origin of land plants: Do conjugating green algae hold the key? // BMC Evol. Biol. V. 11. Art. 104.
  188. Yabuzaki J., 2017. Carotenoids Database: structures, chemical fingerprints and distribution among organisms // Database. V. 2017. Art. bax004. https://doi.org/10.1093/database/bax004
  189. Yamamoto H.Y., Nakayama T.O.M., Chichester C.O., 1962. Studies on the light and dark interconversions of leaf xanthophylls // Arch. Biochem. V. 97. P. 168–173.
  190. Yamazaki S., Nomata J., Fujita Y., 2006. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana // Plant Physiol. V. 142. P. 911–922. https://doi.org/10.1104/pp.106.086090
  191. Young A.J., Lowe G.M., 2001. Antioxidant and prooxidant properties of carotenoids // Arch. Biochem. Biophys. V. 385. № 1. P. 20–27. https://doi.org/10.1006/abbi.2000.2149
  192. Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K., 2021. Anthocyanins as functional food components // Vavilov J. Genet. Breed. V. 25. P. 178–189. https://doi.org/10.18699/VJ21.022
  193. Zhong B., Liu L., Yan Z., Penny D., 2013. Origin of land plants using the multispecies coalescent Model // Trends Plant Sci. V. 18. P. 492–495. https://doi.org/10.1016/j.tplants.2013.04.009
  194. Zhou H., Schwartzenberg K., von, 2020. Zygnematophyceae: From living algae collections to the establishment of future models // J. Exp. Bot. V. 71. № 11. P. 3296–3304. https://doi.org/10.1093/jxb/eraa091
  195. Zhou Z.-Yu., Liu J.-K., 2010. Pigments of fungi (macromyce- tes) // Nat. Prod. Rep. V. 27. P. 1531–1570.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025