Possible pathways and mechanisms of weak alternating magnetic fields influence on cognitive functions in drosophila melanogaster

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Today, in an increasingly complex technogenic situation, the study of the effect of alternating magnetic fields (AMF) on biological objects is of particular relevance. The most sensitive to the action of magnetic fields is the nervous system. Using models on Drosophila melanogaster with different content of cryptochrome (CRY) (universal photo- and magnetosensor) in the test of conditional reflex suppression of courtship, the ways and mechanisms of the effect of weak AMF on memory and cognitive functions were studied. As a result of the study, a persistent repetitive effect of changing the behavior of Drosophila was found. It has been shown that in the light, a weak AMF stimulates the formation of medium-term memory in a mutant by the CG1848 gene for LIM kinase 1 agnts3, which is characterized by a violation of the learning processes and the formation of a memorable trace both under normal conditions and when exposed to a weak AMF in the darkness. CRY is the main target of exposure to weak AMF, since data have been obtained on the differential effect of light and dark on the formation of medium-term memory. The role of AMF in cognitive processes was revealed. The participation of CRY and AMF in the processes of memory formation will allow developing effective methods of non-invasive therapy of neuropathologies.

作者简介

A. Medvedeva

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

B. Shchegolev

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

S. Surma

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

E. Tokmacheva

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

E. Nikitina

Pavlov Institute of Physiology of the Russian Academy of Sciences; Herzen State Pedagogical University of Russia

Email: 21074@mail.ru
St. Petersburg, Russia; St. Petersburg, Russia

E. Savvateeva-Popova

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

参考

  1. Jain N, Shedpure M, Tikariha R, Karanjgaonkar P, Ratre M, Agniwanshi S(2015) Magnetic field effect on biological systems. Indian Journal of Life Sciences 5(1): 135–151.
  2. Rivas M, Martinez-Garcia M(2024) A physical framework to study the effect of magnetic fields on the spike-time coding. Biomedical Engineering and Computational Biology 15: 1–14. https://doi.org/10.1177/11795972241272380
  3. Щеголев БФ, Сурма СB, Попова ИИ, Клячко ДС(2024) Восстановление потенциала действия на первом слуховом нейроне слабым магнитным полем при тугоухости. Интегративнаяфизиология5(4): 357–364. [Shchegolev BF, Surma SV, Popova II, Klyachko DS(2024) Regeneration of first auditory neuron action potential by weak magnetic field in patients with hearing loss.Integrative Physiology5(4): 357–364. (in Russ)]. https://doi.org/10.33910/2687-1270-2024-5-4-357-364
  4. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E(2001) A systematic analysis of human disease-associated gene sequences inDrosophila melanogaster. Genome Res. 11(6):1114–1125. https://doi.org/10.1101/gr.169101
  5. Kawasaki H, Okano H, Ishiwatari H, Kishi T, Ishida N (2023) A role of cryptochrome for magnetic field-dependent improvement of sleep quality, lifespan, and motor function inDrosophila. Genes Cells28(7):496–502. https://doi.org/10.1111/gtc.13030
  6. DimitrijevićD,SavićT,AnđelkovićM,ProlićZ,JanaćB(2014)Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity ofDrosophila subobscura. Int J Radiat Biol.90(5):337–343. https://doi.org/10.3109/09553002.2014.888105.
  7. Zmejkoski D, Petković B, Pavković-Lučić S, Prolić Z, Anđelković M, Savić T (2017) Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity. Int J Radiat Biol 93(5): 544–552. https://doi.org/10.1080/09553002.2017.1268281
  8. Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP(2014) Genetic analysis of circadian responses to low frequency electromagnetic fields inDrosophila melanogaster.PLOS Genetics 10(12): e1004804. https://doi.org/10.1371/journal.pgen.1004804
  9. Фрайкин ГЯ(2022) Фотосенсорные и сигнальные свойства криптохромов. Вестник Московского университета. Серия 16. Биология 77(2): 65–75. [Fraikin GY(2022)Photosensoryandsignalingpropertiesofcryptochromes.Vestnik Moskovskogo universiteta.Seriya 16. Biologiya 77(2): 65–75. (In Russ.)]
  10. Zhuravlev AV, Polev D, Medvedeva AV, Savvateeva-Popova EV(2024) Whole-genome and poly(A)+transcriptome analysis of theDrosophilamutantagnts3with cognitive dysfunctions. Int. J. Mol.Sci. 25: 9891. https://doi.org/10.3390/ijms25189891
  11. Damulewicz M, Mazzotta GM(2020)One actor, multiple roles: The performances of cryptochrome inDrosophila.Front Physiol. 11: 99. https://doi.org/10.3389/fphys.2020.00099
  12. Nikitina EA, Medvedeva AV, Zakharov GA, Savvateeva-Popova EV(2014)The Drosophila agnostic locus: involvement into formation of cognitive defects in William`s syndrome. Acta Naturae 6(2): 53–61. https://doi.org/10.32607/20758251-2014-6-2-53-61
  13. Misu S, Takebayashi M, Kei M(2017) Nuclear actin in development and transcriptional reprogramming. FrontGenet. 8: 27. https://doi.org/10.3389/fgene.2017.00027
  14. Nikitina EA, Kaminskaya AN, Molotkov DA, Popov AV, Savvateeva-Popova EV(2014) Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 inDrosophila melanogastermales with altered structure of thelimk1gene. Journal of Evolutionary Biochemistry and Physiology 50(2): 154–166. https://doi.org/10.1134/S0022093014020082
  15. Vasilieva SA, Tokmacheva EV, Medvedeva AV, Ermilova AA, Nikitina EA, Shchegolev BF, Surma SV, Savvateeva-Popova ЕV(2020) The role of parental origin of chromosomes in the instability of the somatic genome inDrosophilabrain cells and memory trace formation in norm and stress. Cell and Tissue Biology 14(3): 178–189. https://doi.org/10.1134/S1990519X20030074
  16. Huang W, Zong J, Zhang Y, Zhou Y, Zhang L, Wang Y, Shan Z, Xie Q, Li M, Pan S, Xiao Z(2024) The role of circadian rhythm in neurological diseases: A translational perspective. Aging Dis. 15(4):1565–1587. https://doi.org/10.14336/AD.2023.0921
  17. Namme JN, Bepari AK, Takebayashi H(2021) Cofilin signaling in the CNS physiology and neurodegeneration. Int J Mol Sci. 22(19):10727. https://doi.org/10.3390/ijms221910727
  18. Ejima A., Smith BPC, Lucas C, van der Goes van Naters W, Miller CJ, Carlson JR, Levine JD, Griffith LC(2007) Generalization of courtship learning inDrosophilais mediated by cis-vaccenyl acetate. Curr Biol 17(7): 599–605. https://doi.org/10.1016/j.cub.2007.01.053
  19. Kamyshev NG, Iliadi KG, Bragina JV(1999)Drosophilaconditioned courtship: Two ways of testing memory. Learn. Mem. 6: 1–20.
  20. Tokmacheva EV, Medvedeva AV, Shchegolev BF, Nikitina EA, Savvateeva-Popova EV(2024) Long-term memory: the role of light and learning in coping with stress inDrosophila melanogaster. Neurochemical Journal 18(4):728–733. https://doi.org/10.1134/S1819712424700387
  21. Thakur D, Hunt S, Tsou T, Petty M, Rodriguez JM, Montell C(2025) Control of odor sensation by light and cryptochrome in theDrosophilaantenna. iScience 28(5): 112443. https://doi.org/10.1101/2024.12.12.628259
  22. Inami S,Sakai T(2022) Circadian photoreceptors are required for light-dependent maintenance of long-term memory inDrosophila.Neurosci Res.185:62–66. https://doi.org/10.1016/j.neures.2022.09.003
  23. Yin JCP, Cui E, Hardin PE, Zhou H(2023) Circadian disruption of memory consolidation inDrosophila.Frontiers in Systems Neuroscience 17:1129152. https://doi.org/10.3389/fnsys.2023.1129152
  24. De Almeida AJPO, De Oliveira JCPL, Da Silva Pontes LV, De Souza Júnior JF, Gonçalves TAF, Dantas SH, De Medeiros IA(2022) ROS: basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Med Cell Longev.2022: 1225578. https://doi.org/10.1155/2022/1225578
  25. Ferro E, Goitre L, Baldini E, Retta SF,Trabalzini L(2014) Ras GTPases are both regulators and effectors of redox agents. Methods Mol Biol.1120:55–74. https://doi.org/10.1007/978-1-62703-791-4_5
  26. Hobbs GA, Zhou B, Cox AD, Campbell SL(2014)Rho GTPases, oxidation, and cell redox control. Small GTPases. 5:e28579. https://doi.org/10.4161/sgtp.28579
  27. Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB (2025) Brain plasticity and cell competition: Immediate early genes are the focus.Cells14(2):143. https://doi.org/10.3390/cells14020143
  28. Ortega-de San Luis C, Ryan TJ(2022) Understanding the physical basis of memory: Molecular mechanisms of the engram. J. Biol. Chem. 298(5):101866. https://doi.org/10.1016/j.jbc.2022.101866
  29. Yoshii T,Todo T,Helfrich-Förster C(2008) Cryptochrome is present in the compound eyes and a subset ofDrosophila'sclock neurons. J Comp Neurol. 508(6):952–966. https://doi.org/10.1002/cne.21702
  30. Penzes P, Cahill ME(2012) Deconstructing signal transduction pathways that regulate the actin cytoskeleton in dendritic spines. Cytoskeleton 69: 426–441. https://doi.org/10.1002/cm.21015
  31. Damulewicz M, Mazzotta GM, Sartori E,Sartori E,Costa R, Pyza EM(2017)Cryptochrome is a regulator of synaptic plasticity in the visual system ofDrosophila melanogaster. Front Mol Neurosci. 10:165. https://doi.org/10.3389/fnmol.2017.00165
  32. Damulewicz M, Woźnicka O,Jasinska M, Pyza E(2020) CRY-dependent plasticity of tetrad presynaptic sites in the visual system ofDrosophilaat the morningpeak of activity and sleep. Sci Rep. 10(1):18161. https://doi.org/10.1038/s41598-020-74442-w
  33. Ivanchenko M, Stanewsky R, Giebultowicz JM(2001)Circadian photoreception inDrosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms. 16(3):205–215. https://doi.org/10.1177/074873040101600303
  34. Li S, Wang Y, Wang F, Hu L-F, Liu C-F(2016) A new perspective for Parkinson’s disease: Circadian rhythm. Neurosci Bull. 33(1): 62–72. https://doi.org/10.1007/s12264-016-0089-7

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025